还剩10页未读,
继续阅读
成套系列资料,整套一键下载
2024年高中物理新教材同步学案 选择性必修第二册 模块综合试卷(二)(含解析)
展开
这是一份2024年高中物理新教材同步学案 选择性必修第二册 模块综合试卷(二)(含解析),共13页。
模块综合试卷(二)(满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示,由均匀导线制成的半径为R的圆环,以速度v匀速进入一磁感应强度方向垂直向里、大小为B的匀强磁场。当圆环运动到图示位置(∠aOb=90°)时,a、b两点间的电势差为( )A.eq \r(2)BRv B.eq \f(\r(2),2)BRvC.eq \f(\r(2),4)BRv D.eq \f(3\r(2),4)BRv答案 D解析 当圆环运动到题图所示位置时,圆环切割磁感线的有效长度为eq \r(2)R,ab边产生的感应电动势为E=eq \r(2)BRv,a、b两点间的电势差Uab=eq \f(3,4)E=eq \f(3\r(2),4)BRv,故选D。 2.(2023·南京市高二校考期末)据报道,我国空间站安装了现代最先进的霍尔推进器用以空间站的轨道维持。如图,在很窄的圆环空间内有沿半径向外的磁场1,其磁感应强度大小可近似认为处处相等;垂直圆环平面同时加有匀强磁场2和匀强电场(图中未画出),磁场1与磁场2的磁感应强度大小相等,已知电子电荷量为e、质量为m,若电子恰好可以在圆环内沿顺时针方向做半径为R、速度为v的匀速圆周运动。则以下说法不正确的是( )A.电场方向垂直圆环平面向里B.电子运动周期为eq \f(2πR,v)C.垂直圆环平面的磁感应强度大小为eq \f(2mv,eR)D.电场强度大小为eq \f(mv2,eR)答案 C解析 根据左手定则可知电子在圆环内受到沿半径向外的磁场1的洛伦兹力方向垂直圆环平面向里,静电力需要与该洛伦兹力平衡,静电力方向应垂直圆环平面向外,由于电子带负电,故电场方向垂直圆环平面向里,故A正确,不符合题意;电子做半径为R、速率为v的匀速圆周运动,则电子运动周期为T=eq \f(2πR,v),故B正确,不符合题意;电子在圆环内受到磁场2的洛伦兹力提供电子做圆周运动的向心力,则有evB=meq \f(v2,R),解得B=eq \f(mv,eR),故C错误,符合题意;电子在垂直圆环平面方向受力平衡,则有eE=evB,解得E=eq \f(mv2,eR),故D正确,不符合题意。3.(2023·株洲市高二校考期末)如图所示,带电粒子(不计重力)在以下四种器件中运动,下列说法正确的是( )A.甲图中从左侧射入的带正电粒子,若速度满足v>eq \f(E,B),将向下极板偏转B.乙图中等离子体进入A、B极板之间后,A极板电势高于B极板电势C.丙图中通过励磁线圈的电流越大,电子的运动径迹半径越小D.丁图中只要增大加速电压,粒子就能获得更大的动能答案 C解析 题图甲中带正电的粒子从左侧射入叠加场中时,受向下的静电力和向上的洛伦兹力,当两个力平衡时,带电粒子会沿直线射出,当速度v>eq \f(E,B),即洛伦兹力大于静电力时,粒子将向上极板偏转,选项A错误;题图乙中等离子体进入A、B极板之间后,受到洛伦兹力作用,由左手定则可知,正离子向B极板偏转,负离子向A极板偏转,因此A极板带负电,B极板带正电,A极板电势低,选项B错误;题图丙中通过励磁线圈的电流越大,线圈产生的磁场越强,电子的运动由洛伦兹力提供向心力,则有evB=meq \f(v2,R),可得R=eq \f(mv,eB),由上式可知,当电子的速度一定时,磁感应强度越大,电子的运动径迹半径越小,选项C正确;题图丁中,当粒子运动半径等于D形盒半径时具有最大速度,即vm=eq \f(qBR,m),粒子的最大动能Ekm=eq \f(q2B2R2,2m),由此可知最大动能与加速电压无关,选项D错误。4.(2023·泰安市高二统考期末)如图所示,空间存在着与圆台母线垂直向外的磁场,各处的磁感应强度大小均为B,圆台母线与竖直方向的夹角为θ,一个质量为m、半径为r的匀质金属环位于圆台底部,环中通以恒定的电流I,圆环由静止开始向上运动。已知重力加速度为g,不计空气阻力,磁场的范围足够大。在圆环向上运动的过程中,下列说法正确的是( )A.圆环做变加速运动B.圆环有扩张的趋势C.圆环运动的加速度大小为eq \f(2πBIrcos θ,m)-gD.圆环运动的加速度大小为eq \f(2πBIrcos θ,m)答案 C解析 由于圆环能从静止开始向上运动,结合左手定则可知,圆环受到的安培力沿母线向上,故俯视环中电流方向为顺时针方向,环中电流恒为I,圆环所受安培力大小为BI·2πr,其中竖直方向的分力为2πBIrcos θ,对圆环由牛顿第二定律可得2πBIrcos θ-mg=ma,则圆环向上的加速度大小为a=eq \f(2πBIrcos θ,m)-g,圆环做匀加速直线运动,A、D错误,C正确;圆环通电流时,俯视电流方向为顺时针方向,安培力水平分量指向圆心,有收缩的趋势,B错误。5.一理想变压器原、副线圈的回路中分别接有阻值相等的电阻R,原线圈一侧接在电压为170 V的正弦式交流电源上,如图所示。设副线圈回路中电阻两端的电压为U,原、副线圈的匝数比为n1∶n2,在原、副线圈回路中电阻消耗的功率的比值为k=eq \f(1,16),则( )A.U=66 V,n1∶n2=3∶1B.U=34 V,n1∶n2=4∶1C.U=40 V,n1∶n2=4∶1D.U=22 V,n1∶n2=3∶1答案 C解析 根据原、副线圈电流与匝数成反比,得原、副线圈的电流之比eq \f(I1,I2)=eq \f(n2,n1),根据P=I2R及题意得原、副线圈回路中电阻消耗的功率之比k=eq \f(I12,I22)=eq \f(1,16),解得原、副线圈的匝数比为n1∶n2=4∶1,根据原、副线圈电压与匝数成正比,得原线圈两端的电压为4U,根据U=IR知原线圈回路中电阻两端的电压为eq \f(U,4),在原线圈回路中有4U+eq \f(U,4)=170 V,解得U=40 V,故C正确,A、B、D错误。6.如图甲所示,单匝矩形线圈abcd位于匀强磁场中,磁场方向垂直线圈所在平面,磁感应强度B随时间t变化的规律如图乙所示。以图甲中箭头所示方向为线圈中感应电流i的正方向,以垂直于线圈所在平面向里为磁感应强度B的正方向,则下列图中能正确表示线圈中感应电流i随时间t变化规律的是( )答案 C解析 由法拉第电磁感应定律和欧姆定律得:I=eq \f(E,R)=eq \f(ΔΦ,RΔt)=eq \f(S,R)·eq \f(ΔB,Δt),所以线圈中的感应电流大小取决于磁感应强度B的变化率,B-t图像的斜率为eq \f(ΔB,Δt),故在2~3 s内感应电流的大小是0~1 s内的2倍。再由B-t图像可知,0~1 s内,B增大,则Φ增大,由楞次定律知,感应电流方向为逆时针方向,所以0~1 s内的电流为负值;同理可得,1~2 s内的电流为零;2~3 s内的电流为正值,C正确。7.(2023·苏州市高二统考期末)如图所示,从离子源释放的无初速度带电离子经电场U加速后,进入静电分析器(内有辐向电场E)中做匀速圆周运动,从小孔S2射出电场后自P1处垂直边界进入磁分析器中(内有垂直纸面向外的匀强磁场B),最后再从小孔P2垂直下边界射出磁场被收集,不计离子重力及离子间的相互作用,则( )A.静电分析器中K1极板的电势高于K2电势B.从S2射出的离子具有相同的电荷量C.从S2射出的离子具有相同的速度D.从P2射出的离子具有相同的比荷答案 D解析 根据题意可知,离子在磁分析器中做匀速圆周运动,磁场区域的磁感应强度垂直纸面向外,由左手定则可以判断离子一定带正电,同时在静电分析器中由静电力提供向心力做圆周运动,可知K2的电势高于K1的电势,故A错误;根据题意,设离子的质量为m,电荷量为q,离子在加速电场中,由动能定理有qU=eq \f(1,2)mv2,解得v=eq \r(\f(2qU,m)),离子在静电分析器中做匀速圆周运动,则有Eq=meq \f(v2,r),联立解得r=eq \f(2U,E),可知所有离子都能从S2射出,则不能确定从S2射出的离子是否具有相同的电荷量和速度,故B、C错误;根据题意可知,由于离子在静电分析器中做匀速圆周运动,则离子进入磁分析器中的速度仍为v,由牛顿第二定律有qvB=meq \f(v2,r),整理可得r=eq \f(1,B)eq \r(\f(2mU,q)),可知从P2射出的离子具有相同的比荷,故D正确。二、多项选择题(本题3小题,每小题6分,共18分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分)8.如图所示的电路中,电源两端的电压恒定,L为小灯泡,R为光敏电阻(光照强度越大,电阻越小),R和L之间用挡板(未画出)隔开,LED为发光二极管(电流越大,发出的光越强),且R与LED间距不变,电源内阻忽略不计,下列说法中正确的是( )A.当滑动触头P向左移动时,L消耗的功率增大B.当滑动触头P向左移动时,L消耗的功率减小C.当滑动触头P向右移动时,L消耗的功率减小D.无论怎样移动滑动触头P,L消耗的功率都不变答案 AC解析 当滑动触头P向左移动时,滑动变阻器接入电路的电阻减小,流过二极管的电流增大,从而发光增强,使光敏电阻R的阻值减小,流过灯泡的电流增大,L消耗的功率增大。同理,当滑动触头P向右移动时,L消耗的功率减小。故选A、C。9.如图所示,在x轴上方第一象限内存在垂直纸面向里的匀强磁场,x轴下方存在沿y轴正方向的匀强电场。a、b两个重力不计的带电粒子分别从电场中的同一点P由静止释放后,经电场加速从M点射入磁场并在磁场中发生偏转,最后从y轴离开磁场时,速度大小分别为v1和v2,v1的方向与y轴垂直,v2的方向与y轴正方向成60°角。a、b两粒子在磁场中运动的时间分别记为t1和t2,则以下比值正确的是( )A.v1∶v2=2∶1 B.v1∶v2=1∶2C.t1∶t2=3∶2 D.t1∶t2=3∶8答案 AD解析 粒子在电场中加速,设加速的位移为d,则根据动能定理有qEd=eq \f(1,2)mv2,所以v=eq \r(\f(2qEd,m))①粒子在磁场中运动时,其轨迹如图,a粒子的圆心为O,半径为R1,b粒子的圆心为O′,半径为R2,根据几何知识可知R2·sin 30°+R1=R2,则R1∶R2=1∶2②根据洛伦兹力提供向心力有qvB=eq \f(mv2,R),故R=eq \f(mv,qB)③联立①③可得R=eq \f(1,B)eq \r(\f(2mEd,q))则可得eq \f(m1,q1)∶eq \f(m2,q2)=1∶4④将④代入①中可得v1∶v2=2∶1,故A正确,B错误。粒子在磁场中运动的周期为T=eq \f(2πR,v)=eq \f(2πm,qB),所以两粒子在磁场中运动的时间之比为t1∶t2=eq \f(90°,360°)T1∶eq \f(60°,360°)T2=eq \f(2πm1,4·q1B)∶eq \f(2πm2,6·q2B)=3∶8,故C错误,D正确。10.如图甲所示,在光滑水平面上用恒力F拉一质量为m、边长为a、电阻为R的单匝均匀正方形铜线框,在1位置以速度v0进入磁感应强度方向垂直纸面向里、大小为B的匀强磁场并开始计时。若磁场的宽度为b(b>3a),在3t0时刻线框到达2位置速度又为v0,并开始离开匀强磁场。此过程中v-t图像如图乙所示,则( )A.t0时刻线框的速度为v0-eq \f(Ft0,m)B.t=0时刻,线框右侧边MN两端电压为Bav0C.0~t0时间内,通过线框某一横截面的电荷量为eq \f(Ba2,R)D.线框从1位置运动到2位置的过程中,线框中产生的焦耳热为Fb答案 CD解析 根据题图乙可知,在t0~3t0时间内,线框做匀加速直线运动,所受合外力为F,根据牛顿第二定律可得加速度为a=eq \f(F,m),则t0时刻线框的速度为v=v0-a·2t0=v0-eq \f(2Ft0,m),故A错误;t=0时刻,线框右侧边MN两端的电压为外电压,线框产生的感应电动势为E=Bav0外电压即MN两端的电压为U外=eq \f(3,4)E=eq \f(3,4)Bav0,故B错误;线框进入磁场过程中,流过某一截面的电荷量为q=eq \x\to(I)Δt=eq \f(\x\to(E),R)Δt,而eq \x\to(E)=eq \f(ΔΦ,Δt)=eq \f(Ba2,Δt)联立解得q=eq \f(Ba2,R),故C正确;由题图乙可知,线框在位置1和位置2时的速度相等,根据动能定理,知外力做的功等于克服安培力做的功,即有Fb-W克安=ΔEk=0,解得W克安=Fb,故线框中产生的焦耳热为Fb,故D正确。三、非选择题(本题共5小题,共54分)11.(6分)有一个教学用的可拆变压器,如图甲所示,它有两个外观基本相同的线圈A、B,线圈外部还可以绕线。(1)某同学用一多用电表的同一欧姆挡先后测量了A、B线圈的电阻值,指针分别对应图乙中的a、b位置,由此可推断________(选填“A”或“B”)线圈的匝数较多。(2)该实验中输入端所接电源最适合的是________。A.220 V交流电源 B.12 V以内低压直流电源C.36 V安全电压 D.12 V以内低压交流电源答案 (1)A(3分) (2)D(3分)解析 (1)匝数多的导线横截面积小,长度大,故电阻大,由题图乙知,A线圈电阻大,故A线圈匝数较多。(2)为保证学生安全,应用12 V以内低压交流电源。12.(8分)如图为“探究电磁感应现象”的实验装置。(1)将图中所缺的导线补充完整。(2)连接电路后,如果在闭合开关时发现灵敏电流计的指针向右偏了一下,那么闭合开关后可能出现的情况有:①将螺线管A迅速插入螺线管B时,灵敏电流计指针将________(选填“发生”或“不发生”)偏转;②螺线管A插入螺线管B后,将滑动变阻器滑片迅速向左移动时,灵敏电流计指针________(选填“发生”或“不发生”)偏转;③在上述两过程中灵敏电流计指针的偏转方向________(选填“相同”或“相反”)。(3)在做“探究电磁感应现象”实验时,如果螺线管B两端不接任何元件,则螺线管B电路中将________。A.因电路不闭合,无电磁感应现象B.有电磁感应现象,但无感应电流,只有感应电动势C.不能用楞次定律判断感应电动势方向D.可以用楞次定律判断感应电动势方向答案 (1)见解析图(2分) (2)①发生(1分) ②发生(1分) ③相反(1分) (3)BD(3分)解析 (1)将电源、开关、滑动变阻器、螺线管A串联成一个回路,再将灵敏电流计与螺线管B串联成另一个回路,如图所示。(2)①闭合开关,穿过螺线管B的磁通量增加,指针向右偏转,将螺线管A迅速插入螺线管B,穿过螺线管B的磁通量增加,则灵敏电流计的指针将向右偏转;②螺线管A插入螺线管B后,将滑动变阻器滑片迅速向左移动时,滑动变阻器接入电路的电阻增大,则电流减小,穿过螺线管B的磁通量减小,则灵敏电流计指针向左偏转;③两过程中灵敏电流计指针偏转方向相反。(3)如果螺线管B两端不接任何元件,线圈中仍有磁通量的变化,仍会产生感应电动势,不过没有感应电流存在,可根据楞次定律判断出感应电动势的方向,B、D正确,A、C错误。13.(10分)(2023·山西高二统考期末)2022年5月,我国自主设计建造的新一代磁约束核聚变实验装置——“人造太阳”实现首次放电,如图为磁约束装置的简化示意图,图中环形区域内有一垂直纸面向外的匀强磁场,磁感应强度大小为B=1.0 T,磁场边界内圆半径R1未知,外圆半径R2=3 m。一带正电粒子自中空区域的圆心O点以某一初速度v0沿环形区域半径OM方向射入磁场后,恰好不能穿出磁场外边界,且从磁场内边界上的N点第一次射回中空区域。已知∠MON=60°,被束缚带正电粒子的比荷eq \f(q,m)=4.0×107 C/kg,不计带电粒子的重力,不考虑粒子之后的运动,求:(1)带电粒子射入环形磁场时的初速度大小v0;(2)该粒子从O点出发到再次回到O点所需的最短时间。答案 (1)4.0×107 m/s (2)eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),2)+\f(π,3)))×10-7 s解析 (1)设带电粒子在磁场中做圆周运动的轨道半径为r,如图所示,由几何知识得r+eq \f(r,sin 30°)=R2(1分)解得r=1 m(1分)根据洛伦兹力提供向心力有qv0B=meq \f(v02,r)(1分)解得v0=4.0×107 m/s(1分)(2)根据题意有t1=t3=eq \f(R1,v0)(1分)R1=eq \f(r,tan 30°)=eq \r(3) m(1分)t1=t3=eq \f(\r(3),4)×10-7 s(1分)T=eq \f(2πr,v0)=eq \f(2πm,qB)(1分)t2=eq \f(240°,360°)·eq \f(2πm,qB)=eq \f(4πm,3qB)=eq \f(π,3)×10-7 s(1分)故t=t1+t2+t3=(eq \f(\r(3),2)+eq \f(π,3))×10-7 s。(1分)14.(12分)(2023·湖北高二统考期末)随着电磁技术的日趋成熟,新一代航母已准备采用全新的电磁阻拦技术。为方便研究问题,我们将其简化为如图所示的模型。在磁感应强度大小为B,方向如图所示的匀强磁场中,两根光滑的平行金属轨道MN、PQ固定在水平面内,相距为L,电阻不计。轨道端点M、P间接有阻值为R的电阻,一个长度为L、阻值为R的轻质导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好,质量为m的飞机着舰时迅速钩住导体棒ab,两者瞬间共速,速度大小为v0,钩住之后飞机立即关闭动力系统,不计飞机和导体棒ab受到的空气阻力。求:(1)飞机减速过程中导体棒ab中产生的焦耳热;(2)飞机速度为eq \f(v0,3)时的加速度大小;(3)飞机减速过程中的位移大小。答案 (1)eq \f(1,4)mv02 (2)eq \f(B2L2v0,6Rm) (3)eq \f(2Rmv0,B2L2)解析 (1)飞机减速至0的过程中,根据能量守恒定律有Q=eq \f(1,2)mv02(1分)飞机减速过程中导体棒ab中产生的焦耳热Q′=eq \f(Q,R+R)R(1分)解得Q′=eq \f(1,4)mv02(1分)(2)飞机速度为eq \f(v0,3)时的感应电动势E=eq \f(BLv0,3)(1分)感应电流为I=eq \f(E,R+R)(1分)根据牛顿第二定律有BIL=ma(1分)解得a=eq \f(B2L2v0,6Rm)(1分)(3)减速过程中的平均感应电动势为eq \x\to(E)=eq \f(BLx,Δt)(1分)感应电流的平均值eq \x\to(I)=eq \f(\x\to(E),R+R)(1分)根据动量定理有-Beq \x\to(I)L·Δt=0-mv0(2分)解得x=eq \f(2Rmv0,B2L2)。(1分)15.(18分)(2023·日照高二统考期末)某型号带电粒子的约束装置如图所示。分界面P、M、N、Q将某一区域分为Ⅰ、Ⅱ、Ⅲ三部分,P、M、N、Q所在平面相互平行,以O点为坐标原点,水平直线为x轴,规定向右为正方向,x轴与界面P、M、N、Q的交点分别为O、O1、O2、O3,以平行于P水平向里为z轴正方向,竖直向上为y轴正方向,建立空间直角坐标系Oxyz。区域 Ⅰ 内充满沿y轴负方向的匀强电场,电场强度大小为E=5×103 N/C;区域 Ⅱ 内充满沿y轴负方向的匀强磁场,磁感应强度大小为B1=2×10-2 T,区域 Ⅲ 内充满沿x轴正方向的匀强磁场,磁感应强度大小为B2=eq \f(2,75) T。一比荷eq \f(q,m)=5×107 C/kg的带正电粒子,在Oxy平面内,从O点以速度v0进入电场,速度大小v0=4×105 m/s,速度方向与x轴正方向夹角θ=60°,粒子经过界面M上的A点平行于x轴方向进入M、N间的磁场,不计粒子重力。(sin 53°=0.8,cos 53°=0.6)(1)求A点的坐标;(2)若粒子不能进入N、Q间的磁场,求M、N间的最小距离dmin;(3)若M、N间的距离d=0.16 m,N、Q间的距离l=eq \f(27π,100) m,粒子经过界面Q的F点(图中未画出),求F点到O3的距离。答案 (1)(0.16eq \r(3) m,0.24 m,0) (2)0.2 (3)0.08 m解析 (1)由题意可知,粒子在Oxy平面内,从O点以速度v0进入电场做类斜抛运动,y方向上做匀减速运动,有a=eq \f(qE,m)=2.5×1011 m/s2(1分)y=eq \f(v0sin 60°2,2a)=0.24 m(1分)运动时间t1=eq \f(v0sin θ,a)(1分)x方向上做匀速运动,则有x=v0t1cos θ=0.16eq \r(3) m,z=0(1分)所以A点的坐标:(0.16eq \r(3) m,0.24 m,0)(1分)(2)粒子经过界面M上的A点后,速度为v=v0cos θ=2×105 m/s沿水平方向进入M、N间的磁场,在Oxz水平面内做匀速周圆运动。根据洛伦兹力充当向心力可得qvB1=meq \f(v2,R1),解得R1=0.2 m(1分)若粒子不能进入N、Q间磁场,M、N间的最小距离dmin=R1=0.2 m(3)若M、N间的距离为0.16 m,粒子将从N上的C点进入N、Q间的匀强磁场中,如图所示,粒子在C点速度方向与水平方向的夹角为α,sin α=eq \f(d,R1)=0.8(1分)所以α=53°(1分)由分析可知:粒子将在yOz平面内做匀速圆周运动,在x方向上做匀速直线运动,即等距螺旋运动v1=vcos 53°=1.2×105 m/s(1分)v2=vsin 53°=1.6×105 m/s(1分)粒子在yOz平面内做匀速圆周运动的轨道半径R2=eq \f(mv2,qB2)=0.12 m(1分)圆心为D,运动轨迹在Q所在平面的投影如图所示A点与C点在z方向的水平距离l0=R1-R1cos 53°=0.08 m(1分)带电粒子从N到Q所用时间为t2=eq \f(l,v1)(1分)解得t2=2.25π×10-6 s(1分)粒子yOz平面内做匀速圆周运动转动的角速度ω=eq \f(qB2,m)=eq \f(2,15)×107 rad/s(1分)转过的角度φ=ωt2=3π(1分)粒子转过1.5圈打到界面Q上的F点,有CF=0.24 m(1分)故O3F与z轴平行,可得O3F=0.08 m。(1分)
模块综合试卷(二)(满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示,由均匀导线制成的半径为R的圆环,以速度v匀速进入一磁感应强度方向垂直向里、大小为B的匀强磁场。当圆环运动到图示位置(∠aOb=90°)时,a、b两点间的电势差为( )A.eq \r(2)BRv B.eq \f(\r(2),2)BRvC.eq \f(\r(2),4)BRv D.eq \f(3\r(2),4)BRv答案 D解析 当圆环运动到题图所示位置时,圆环切割磁感线的有效长度为eq \r(2)R,ab边产生的感应电动势为E=eq \r(2)BRv,a、b两点间的电势差Uab=eq \f(3,4)E=eq \f(3\r(2),4)BRv,故选D。 2.(2023·南京市高二校考期末)据报道,我国空间站安装了现代最先进的霍尔推进器用以空间站的轨道维持。如图,在很窄的圆环空间内有沿半径向外的磁场1,其磁感应强度大小可近似认为处处相等;垂直圆环平面同时加有匀强磁场2和匀强电场(图中未画出),磁场1与磁场2的磁感应强度大小相等,已知电子电荷量为e、质量为m,若电子恰好可以在圆环内沿顺时针方向做半径为R、速度为v的匀速圆周运动。则以下说法不正确的是( )A.电场方向垂直圆环平面向里B.电子运动周期为eq \f(2πR,v)C.垂直圆环平面的磁感应强度大小为eq \f(2mv,eR)D.电场强度大小为eq \f(mv2,eR)答案 C解析 根据左手定则可知电子在圆环内受到沿半径向外的磁场1的洛伦兹力方向垂直圆环平面向里,静电力需要与该洛伦兹力平衡,静电力方向应垂直圆环平面向外,由于电子带负电,故电场方向垂直圆环平面向里,故A正确,不符合题意;电子做半径为R、速率为v的匀速圆周运动,则电子运动周期为T=eq \f(2πR,v),故B正确,不符合题意;电子在圆环内受到磁场2的洛伦兹力提供电子做圆周运动的向心力,则有evB=meq \f(v2,R),解得B=eq \f(mv,eR),故C错误,符合题意;电子在垂直圆环平面方向受力平衡,则有eE=evB,解得E=eq \f(mv2,eR),故D正确,不符合题意。3.(2023·株洲市高二校考期末)如图所示,带电粒子(不计重力)在以下四种器件中运动,下列说法正确的是( )A.甲图中从左侧射入的带正电粒子,若速度满足v>eq \f(E,B),将向下极板偏转B.乙图中等离子体进入A、B极板之间后,A极板电势高于B极板电势C.丙图中通过励磁线圈的电流越大,电子的运动径迹半径越小D.丁图中只要增大加速电压,粒子就能获得更大的动能答案 C解析 题图甲中带正电的粒子从左侧射入叠加场中时,受向下的静电力和向上的洛伦兹力,当两个力平衡时,带电粒子会沿直线射出,当速度v>eq \f(E,B),即洛伦兹力大于静电力时,粒子将向上极板偏转,选项A错误;题图乙中等离子体进入A、B极板之间后,受到洛伦兹力作用,由左手定则可知,正离子向B极板偏转,负离子向A极板偏转,因此A极板带负电,B极板带正电,A极板电势低,选项B错误;题图丙中通过励磁线圈的电流越大,线圈产生的磁场越强,电子的运动由洛伦兹力提供向心力,则有evB=meq \f(v2,R),可得R=eq \f(mv,eB),由上式可知,当电子的速度一定时,磁感应强度越大,电子的运动径迹半径越小,选项C正确;题图丁中,当粒子运动半径等于D形盒半径时具有最大速度,即vm=eq \f(qBR,m),粒子的最大动能Ekm=eq \f(q2B2R2,2m),由此可知最大动能与加速电压无关,选项D错误。4.(2023·泰安市高二统考期末)如图所示,空间存在着与圆台母线垂直向外的磁场,各处的磁感应强度大小均为B,圆台母线与竖直方向的夹角为θ,一个质量为m、半径为r的匀质金属环位于圆台底部,环中通以恒定的电流I,圆环由静止开始向上运动。已知重力加速度为g,不计空气阻力,磁场的范围足够大。在圆环向上运动的过程中,下列说法正确的是( )A.圆环做变加速运动B.圆环有扩张的趋势C.圆环运动的加速度大小为eq \f(2πBIrcos θ,m)-gD.圆环运动的加速度大小为eq \f(2πBIrcos θ,m)答案 C解析 由于圆环能从静止开始向上运动,结合左手定则可知,圆环受到的安培力沿母线向上,故俯视环中电流方向为顺时针方向,环中电流恒为I,圆环所受安培力大小为BI·2πr,其中竖直方向的分力为2πBIrcos θ,对圆环由牛顿第二定律可得2πBIrcos θ-mg=ma,则圆环向上的加速度大小为a=eq \f(2πBIrcos θ,m)-g,圆环做匀加速直线运动,A、D错误,C正确;圆环通电流时,俯视电流方向为顺时针方向,安培力水平分量指向圆心,有收缩的趋势,B错误。5.一理想变压器原、副线圈的回路中分别接有阻值相等的电阻R,原线圈一侧接在电压为170 V的正弦式交流电源上,如图所示。设副线圈回路中电阻两端的电压为U,原、副线圈的匝数比为n1∶n2,在原、副线圈回路中电阻消耗的功率的比值为k=eq \f(1,16),则( )A.U=66 V,n1∶n2=3∶1B.U=34 V,n1∶n2=4∶1C.U=40 V,n1∶n2=4∶1D.U=22 V,n1∶n2=3∶1答案 C解析 根据原、副线圈电流与匝数成反比,得原、副线圈的电流之比eq \f(I1,I2)=eq \f(n2,n1),根据P=I2R及题意得原、副线圈回路中电阻消耗的功率之比k=eq \f(I12,I22)=eq \f(1,16),解得原、副线圈的匝数比为n1∶n2=4∶1,根据原、副线圈电压与匝数成正比,得原线圈两端的电压为4U,根据U=IR知原线圈回路中电阻两端的电压为eq \f(U,4),在原线圈回路中有4U+eq \f(U,4)=170 V,解得U=40 V,故C正确,A、B、D错误。6.如图甲所示,单匝矩形线圈abcd位于匀强磁场中,磁场方向垂直线圈所在平面,磁感应强度B随时间t变化的规律如图乙所示。以图甲中箭头所示方向为线圈中感应电流i的正方向,以垂直于线圈所在平面向里为磁感应强度B的正方向,则下列图中能正确表示线圈中感应电流i随时间t变化规律的是( )答案 C解析 由法拉第电磁感应定律和欧姆定律得:I=eq \f(E,R)=eq \f(ΔΦ,RΔt)=eq \f(S,R)·eq \f(ΔB,Δt),所以线圈中的感应电流大小取决于磁感应强度B的变化率,B-t图像的斜率为eq \f(ΔB,Δt),故在2~3 s内感应电流的大小是0~1 s内的2倍。再由B-t图像可知,0~1 s内,B增大,则Φ增大,由楞次定律知,感应电流方向为逆时针方向,所以0~1 s内的电流为负值;同理可得,1~2 s内的电流为零;2~3 s内的电流为正值,C正确。7.(2023·苏州市高二统考期末)如图所示,从离子源释放的无初速度带电离子经电场U加速后,进入静电分析器(内有辐向电场E)中做匀速圆周运动,从小孔S2射出电场后自P1处垂直边界进入磁分析器中(内有垂直纸面向外的匀强磁场B),最后再从小孔P2垂直下边界射出磁场被收集,不计离子重力及离子间的相互作用,则( )A.静电分析器中K1极板的电势高于K2电势B.从S2射出的离子具有相同的电荷量C.从S2射出的离子具有相同的速度D.从P2射出的离子具有相同的比荷答案 D解析 根据题意可知,离子在磁分析器中做匀速圆周运动,磁场区域的磁感应强度垂直纸面向外,由左手定则可以判断离子一定带正电,同时在静电分析器中由静电力提供向心力做圆周运动,可知K2的电势高于K1的电势,故A错误;根据题意,设离子的质量为m,电荷量为q,离子在加速电场中,由动能定理有qU=eq \f(1,2)mv2,解得v=eq \r(\f(2qU,m)),离子在静电分析器中做匀速圆周运动,则有Eq=meq \f(v2,r),联立解得r=eq \f(2U,E),可知所有离子都能从S2射出,则不能确定从S2射出的离子是否具有相同的电荷量和速度,故B、C错误;根据题意可知,由于离子在静电分析器中做匀速圆周运动,则离子进入磁分析器中的速度仍为v,由牛顿第二定律有qvB=meq \f(v2,r),整理可得r=eq \f(1,B)eq \r(\f(2mU,q)),可知从P2射出的离子具有相同的比荷,故D正确。二、多项选择题(本题3小题,每小题6分,共18分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分)8.如图所示的电路中,电源两端的电压恒定,L为小灯泡,R为光敏电阻(光照强度越大,电阻越小),R和L之间用挡板(未画出)隔开,LED为发光二极管(电流越大,发出的光越强),且R与LED间距不变,电源内阻忽略不计,下列说法中正确的是( )A.当滑动触头P向左移动时,L消耗的功率增大B.当滑动触头P向左移动时,L消耗的功率减小C.当滑动触头P向右移动时,L消耗的功率减小D.无论怎样移动滑动触头P,L消耗的功率都不变答案 AC解析 当滑动触头P向左移动时,滑动变阻器接入电路的电阻减小,流过二极管的电流增大,从而发光增强,使光敏电阻R的阻值减小,流过灯泡的电流增大,L消耗的功率增大。同理,当滑动触头P向右移动时,L消耗的功率减小。故选A、C。9.如图所示,在x轴上方第一象限内存在垂直纸面向里的匀强磁场,x轴下方存在沿y轴正方向的匀强电场。a、b两个重力不计的带电粒子分别从电场中的同一点P由静止释放后,经电场加速从M点射入磁场并在磁场中发生偏转,最后从y轴离开磁场时,速度大小分别为v1和v2,v1的方向与y轴垂直,v2的方向与y轴正方向成60°角。a、b两粒子在磁场中运动的时间分别记为t1和t2,则以下比值正确的是( )A.v1∶v2=2∶1 B.v1∶v2=1∶2C.t1∶t2=3∶2 D.t1∶t2=3∶8答案 AD解析 粒子在电场中加速,设加速的位移为d,则根据动能定理有qEd=eq \f(1,2)mv2,所以v=eq \r(\f(2qEd,m))①粒子在磁场中运动时,其轨迹如图,a粒子的圆心为O,半径为R1,b粒子的圆心为O′,半径为R2,根据几何知识可知R2·sin 30°+R1=R2,则R1∶R2=1∶2②根据洛伦兹力提供向心力有qvB=eq \f(mv2,R),故R=eq \f(mv,qB)③联立①③可得R=eq \f(1,B)eq \r(\f(2mEd,q))则可得eq \f(m1,q1)∶eq \f(m2,q2)=1∶4④将④代入①中可得v1∶v2=2∶1,故A正确,B错误。粒子在磁场中运动的周期为T=eq \f(2πR,v)=eq \f(2πm,qB),所以两粒子在磁场中运动的时间之比为t1∶t2=eq \f(90°,360°)T1∶eq \f(60°,360°)T2=eq \f(2πm1,4·q1B)∶eq \f(2πm2,6·q2B)=3∶8,故C错误,D正确。10.如图甲所示,在光滑水平面上用恒力F拉一质量为m、边长为a、电阻为R的单匝均匀正方形铜线框,在1位置以速度v0进入磁感应强度方向垂直纸面向里、大小为B的匀强磁场并开始计时。若磁场的宽度为b(b>3a),在3t0时刻线框到达2位置速度又为v0,并开始离开匀强磁场。此过程中v-t图像如图乙所示,则( )A.t0时刻线框的速度为v0-eq \f(Ft0,m)B.t=0时刻,线框右侧边MN两端电压为Bav0C.0~t0时间内,通过线框某一横截面的电荷量为eq \f(Ba2,R)D.线框从1位置运动到2位置的过程中,线框中产生的焦耳热为Fb答案 CD解析 根据题图乙可知,在t0~3t0时间内,线框做匀加速直线运动,所受合外力为F,根据牛顿第二定律可得加速度为a=eq \f(F,m),则t0时刻线框的速度为v=v0-a·2t0=v0-eq \f(2Ft0,m),故A错误;t=0时刻,线框右侧边MN两端的电压为外电压,线框产生的感应电动势为E=Bav0外电压即MN两端的电压为U外=eq \f(3,4)E=eq \f(3,4)Bav0,故B错误;线框进入磁场过程中,流过某一截面的电荷量为q=eq \x\to(I)Δt=eq \f(\x\to(E),R)Δt,而eq \x\to(E)=eq \f(ΔΦ,Δt)=eq \f(Ba2,Δt)联立解得q=eq \f(Ba2,R),故C正确;由题图乙可知,线框在位置1和位置2时的速度相等,根据动能定理,知外力做的功等于克服安培力做的功,即有Fb-W克安=ΔEk=0,解得W克安=Fb,故线框中产生的焦耳热为Fb,故D正确。三、非选择题(本题共5小题,共54分)11.(6分)有一个教学用的可拆变压器,如图甲所示,它有两个外观基本相同的线圈A、B,线圈外部还可以绕线。(1)某同学用一多用电表的同一欧姆挡先后测量了A、B线圈的电阻值,指针分别对应图乙中的a、b位置,由此可推断________(选填“A”或“B”)线圈的匝数较多。(2)该实验中输入端所接电源最适合的是________。A.220 V交流电源 B.12 V以内低压直流电源C.36 V安全电压 D.12 V以内低压交流电源答案 (1)A(3分) (2)D(3分)解析 (1)匝数多的导线横截面积小,长度大,故电阻大,由题图乙知,A线圈电阻大,故A线圈匝数较多。(2)为保证学生安全,应用12 V以内低压交流电源。12.(8分)如图为“探究电磁感应现象”的实验装置。(1)将图中所缺的导线补充完整。(2)连接电路后,如果在闭合开关时发现灵敏电流计的指针向右偏了一下,那么闭合开关后可能出现的情况有:①将螺线管A迅速插入螺线管B时,灵敏电流计指针将________(选填“发生”或“不发生”)偏转;②螺线管A插入螺线管B后,将滑动变阻器滑片迅速向左移动时,灵敏电流计指针________(选填“发生”或“不发生”)偏转;③在上述两过程中灵敏电流计指针的偏转方向________(选填“相同”或“相反”)。(3)在做“探究电磁感应现象”实验时,如果螺线管B两端不接任何元件,则螺线管B电路中将________。A.因电路不闭合,无电磁感应现象B.有电磁感应现象,但无感应电流,只有感应电动势C.不能用楞次定律判断感应电动势方向D.可以用楞次定律判断感应电动势方向答案 (1)见解析图(2分) (2)①发生(1分) ②发生(1分) ③相反(1分) (3)BD(3分)解析 (1)将电源、开关、滑动变阻器、螺线管A串联成一个回路,再将灵敏电流计与螺线管B串联成另一个回路,如图所示。(2)①闭合开关,穿过螺线管B的磁通量增加,指针向右偏转,将螺线管A迅速插入螺线管B,穿过螺线管B的磁通量增加,则灵敏电流计的指针将向右偏转;②螺线管A插入螺线管B后,将滑动变阻器滑片迅速向左移动时,滑动变阻器接入电路的电阻增大,则电流减小,穿过螺线管B的磁通量减小,则灵敏电流计指针向左偏转;③两过程中灵敏电流计指针偏转方向相反。(3)如果螺线管B两端不接任何元件,线圈中仍有磁通量的变化,仍会产生感应电动势,不过没有感应电流存在,可根据楞次定律判断出感应电动势的方向,B、D正确,A、C错误。13.(10分)(2023·山西高二统考期末)2022年5月,我国自主设计建造的新一代磁约束核聚变实验装置——“人造太阳”实现首次放电,如图为磁约束装置的简化示意图,图中环形区域内有一垂直纸面向外的匀强磁场,磁感应强度大小为B=1.0 T,磁场边界内圆半径R1未知,外圆半径R2=3 m。一带正电粒子自中空区域的圆心O点以某一初速度v0沿环形区域半径OM方向射入磁场后,恰好不能穿出磁场外边界,且从磁场内边界上的N点第一次射回中空区域。已知∠MON=60°,被束缚带正电粒子的比荷eq \f(q,m)=4.0×107 C/kg,不计带电粒子的重力,不考虑粒子之后的运动,求:(1)带电粒子射入环形磁场时的初速度大小v0;(2)该粒子从O点出发到再次回到O点所需的最短时间。答案 (1)4.0×107 m/s (2)eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),2)+\f(π,3)))×10-7 s解析 (1)设带电粒子在磁场中做圆周运动的轨道半径为r,如图所示,由几何知识得r+eq \f(r,sin 30°)=R2(1分)解得r=1 m(1分)根据洛伦兹力提供向心力有qv0B=meq \f(v02,r)(1分)解得v0=4.0×107 m/s(1分)(2)根据题意有t1=t3=eq \f(R1,v0)(1分)R1=eq \f(r,tan 30°)=eq \r(3) m(1分)t1=t3=eq \f(\r(3),4)×10-7 s(1分)T=eq \f(2πr,v0)=eq \f(2πm,qB)(1分)t2=eq \f(240°,360°)·eq \f(2πm,qB)=eq \f(4πm,3qB)=eq \f(π,3)×10-7 s(1分)故t=t1+t2+t3=(eq \f(\r(3),2)+eq \f(π,3))×10-7 s。(1分)14.(12分)(2023·湖北高二统考期末)随着电磁技术的日趋成熟,新一代航母已准备采用全新的电磁阻拦技术。为方便研究问题,我们将其简化为如图所示的模型。在磁感应强度大小为B,方向如图所示的匀强磁场中,两根光滑的平行金属轨道MN、PQ固定在水平面内,相距为L,电阻不计。轨道端点M、P间接有阻值为R的电阻,一个长度为L、阻值为R的轻质导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好,质量为m的飞机着舰时迅速钩住导体棒ab,两者瞬间共速,速度大小为v0,钩住之后飞机立即关闭动力系统,不计飞机和导体棒ab受到的空气阻力。求:(1)飞机减速过程中导体棒ab中产生的焦耳热;(2)飞机速度为eq \f(v0,3)时的加速度大小;(3)飞机减速过程中的位移大小。答案 (1)eq \f(1,4)mv02 (2)eq \f(B2L2v0,6Rm) (3)eq \f(2Rmv0,B2L2)解析 (1)飞机减速至0的过程中,根据能量守恒定律有Q=eq \f(1,2)mv02(1分)飞机减速过程中导体棒ab中产生的焦耳热Q′=eq \f(Q,R+R)R(1分)解得Q′=eq \f(1,4)mv02(1分)(2)飞机速度为eq \f(v0,3)时的感应电动势E=eq \f(BLv0,3)(1分)感应电流为I=eq \f(E,R+R)(1分)根据牛顿第二定律有BIL=ma(1分)解得a=eq \f(B2L2v0,6Rm)(1分)(3)减速过程中的平均感应电动势为eq \x\to(E)=eq \f(BLx,Δt)(1分)感应电流的平均值eq \x\to(I)=eq \f(\x\to(E),R+R)(1分)根据动量定理有-Beq \x\to(I)L·Δt=0-mv0(2分)解得x=eq \f(2Rmv0,B2L2)。(1分)15.(18分)(2023·日照高二统考期末)某型号带电粒子的约束装置如图所示。分界面P、M、N、Q将某一区域分为Ⅰ、Ⅱ、Ⅲ三部分,P、M、N、Q所在平面相互平行,以O点为坐标原点,水平直线为x轴,规定向右为正方向,x轴与界面P、M、N、Q的交点分别为O、O1、O2、O3,以平行于P水平向里为z轴正方向,竖直向上为y轴正方向,建立空间直角坐标系Oxyz。区域 Ⅰ 内充满沿y轴负方向的匀强电场,电场强度大小为E=5×103 N/C;区域 Ⅱ 内充满沿y轴负方向的匀强磁场,磁感应强度大小为B1=2×10-2 T,区域 Ⅲ 内充满沿x轴正方向的匀强磁场,磁感应强度大小为B2=eq \f(2,75) T。一比荷eq \f(q,m)=5×107 C/kg的带正电粒子,在Oxy平面内,从O点以速度v0进入电场,速度大小v0=4×105 m/s,速度方向与x轴正方向夹角θ=60°,粒子经过界面M上的A点平行于x轴方向进入M、N间的磁场,不计粒子重力。(sin 53°=0.8,cos 53°=0.6)(1)求A点的坐标;(2)若粒子不能进入N、Q间的磁场,求M、N间的最小距离dmin;(3)若M、N间的距离d=0.16 m,N、Q间的距离l=eq \f(27π,100) m,粒子经过界面Q的F点(图中未画出),求F点到O3的距离。答案 (1)(0.16eq \r(3) m,0.24 m,0) (2)0.2 (3)0.08 m解析 (1)由题意可知,粒子在Oxy平面内,从O点以速度v0进入电场做类斜抛运动,y方向上做匀减速运动,有a=eq \f(qE,m)=2.5×1011 m/s2(1分)y=eq \f(v0sin 60°2,2a)=0.24 m(1分)运动时间t1=eq \f(v0sin θ,a)(1分)x方向上做匀速运动,则有x=v0t1cos θ=0.16eq \r(3) m,z=0(1分)所以A点的坐标:(0.16eq \r(3) m,0.24 m,0)(1分)(2)粒子经过界面M上的A点后,速度为v=v0cos θ=2×105 m/s沿水平方向进入M、N间的磁场,在Oxz水平面内做匀速周圆运动。根据洛伦兹力充当向心力可得qvB1=meq \f(v2,R1),解得R1=0.2 m(1分)若粒子不能进入N、Q间磁场,M、N间的最小距离dmin=R1=0.2 m(3)若M、N间的距离为0.16 m,粒子将从N上的C点进入N、Q间的匀强磁场中,如图所示,粒子在C点速度方向与水平方向的夹角为α,sin α=eq \f(d,R1)=0.8(1分)所以α=53°(1分)由分析可知:粒子将在yOz平面内做匀速圆周运动,在x方向上做匀速直线运动,即等距螺旋运动v1=vcos 53°=1.2×105 m/s(1分)v2=vsin 53°=1.6×105 m/s(1分)粒子在yOz平面内做匀速圆周运动的轨道半径R2=eq \f(mv2,qB2)=0.12 m(1分)圆心为D,运动轨迹在Q所在平面的投影如图所示A点与C点在z方向的水平距离l0=R1-R1cos 53°=0.08 m(1分)带电粒子从N到Q所用时间为t2=eq \f(l,v1)(1分)解得t2=2.25π×10-6 s(1分)粒子yOz平面内做匀速圆周运动转动的角速度ω=eq \f(qB2,m)=eq \f(2,15)×107 rad/s(1分)转过的角度φ=ωt2=3π(1分)粒子转过1.5圈打到界面Q上的F点,有CF=0.24 m(1分)故O3F与z轴平行,可得O3F=0.08 m。(1分)
相关资料
更多