|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题10 分式方程 2023年中考数学一轮复习专题特训(广东专用)
    立即下载
    加入资料篮
    专题10 分式方程 2023年中考数学一轮复习专题特训(广东专用)01
    专题10 分式方程 2023年中考数学一轮复习专题特训(广东专用)02
    专题10 分式方程 2023年中考数学一轮复习专题特训(广东专用)03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题10 分式方程 2023年中考数学一轮复习专题特训(广东专用)

    展开
    这是一份专题10 分式方程 2023年中考数学一轮复习专题特训(广东专用),共20页。试卷主要包含了单选题,填空题,计算题,综合题等内容,欢迎下载使用。

    专题10 分式方程 2023年中考数学一轮复习专题特训(广东专用)

    一、单选题

    1.(2022·深圳模拟)《九章算术》中有问题:把一份文件送到900里外的城市,如果用慢马送,需要的时间比规定时间多一天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为(  ) 

    A B

    C D

    2.(2022·福田模拟)为满足市场对新冠疫苗需求,某大型疫苗生产企业更新技术后,加快了生产速度,现在平均每天比更新技术前多生产6万份疫苗,现在生产500万份疫苗所需的时间与更新技术前生产300万份疫苗所需时间相同,设更新技术前每天生产x万份,依据题意,可得方程(  )

    A B

    C D

    3.(2022·潮阳模拟)在某核酸检测任务中,甲医疗队比乙医疗队每小时多检测15人,甲队检测600人所用的时间比乙队检测500人所用的时间少.设甲队每小时检测人,根据题意,可列方程为

    A B

    C D

    4.(2022·从化模拟)方程 的解为(  ) 

    Ax4 Bx  Cx  Dx

    5.()分式方程=的解是 (  )

    Ax=1 Bx=-2 Cx= Dx=2

    6.()某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务。设乙车间每天生产x玩具,可列方程为(  )

    A= B=

    C= D=

    7.(2022·花都模拟)甲、乙两位同学去图书馆参加整理书籍的志愿活动,已知甲每小时比乙多整理5本,甲整理80本书所用的时间与乙整理70本书所用的时间相同,设乙每小时整理x本书,根据题意列方程得(  )

    A B C D

    8.(2021·顺德模拟)若关于x的不等式组 有且只有8个整数解,关于y的方程 的解为非负数,则满足条件的整数a的值为(  ) 

    A B

    C  D

    9.(2021·天河模拟)小明把分式方程 去分母后得到整式方程 ,由此他判断该分式方程只有一个解.对于他的判断,你认为下列看法正确的是(  )

    A.小明的说法完全正确

    B.整式方程正确,但分式方程有2个解

    C.整式方程错误,分式方程无解

    D.整式方程错误,分式方程只有1个解

    10.(2021·深圳模拟)以下说法正确的是(  )  

    A.三角形的外心到三角形三边的距离相等

    B.顺次连接对角线相等的四边形各边中点所得的四边形是菱形

    C.分式方程 的解为x2

    D.将抛物线y2x22向右平移1个单位后得到的抛物线是y2x23

    二、填空题

    11.(2022·广州)分式方程的解是       

    12.(2022·广东模拟)分式方程 的根为       

    13.(2022·江模拟)方程的解为       

    14.(2022·花都模拟)若关于x的方程的解为负数,则点(mm+2)在第       象限.

    15.(2022·禅城模拟)若关于x的分式方程有正整数解,则整数m        

    16.()甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少kg货物。设甲每小时搬运xkg货物,则可列方程为                    

    17.()某施工队要铺设一段全长2000米的管道,中考期间需停工两天,实际施工时,每天需比原来计划多铺设50米,才能按时完成任务,求原计划每天施工多少米,设原计划每天施工x米,则根据题意可列方程为                      .

    18.(2022下·高州期末)关于x的方程有增根,则a的值是       

    19.(2022下·五华期末)若关于x的方程有增根,则m的值是       

    20.(2022下·龙岗期末)关于x的分式方程无解,则m       

    三、计算题

    21.(2022下·和平期末)解分式方程:

    22.(2022下·光明期末)解分式方程

    23.(2022下·河源期末)解分式方程:

    24.(2022·新会模拟)解方程:

    25.(2021上·东莞期末)解分式方程:3

    四、综合题

    26.(2022下·深圳期末)某鲜花店销售A种鲜花每束的单价比B种多6元,张阿姨发现:用720元购得的A种鲜花与用600元购得的B种鲜花的束数一样多.母亲节前夕,该鲜花店推出优惠活动方案:购买A种鲜花,前10束(含10束)按原价销售,购买超过10束,每多买一束,送一束;购买B种鲜花,每束都按原价的七五折销售.

    1求该鲜花店AB两种鲜花的单价各是多少元?

    2)某公司准备购进m束(m为大于10的偶数)同种鲜花,请问该如何购买更合算?请通过计算说明.

    27.(2022·深圳)某学校打算购买甲乙两种不同类型的笔记本. 已知甲种类型的电脑的单价比乙种类型的要便宜10元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.

    1)求甲乙两种类型笔记本的单价.

    2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少?

    28.(2022·潮南模拟423日为世界读书日.每年的这一天,各地都会举办各种宣传活动.我市某书店为迎接读书节制定了活动计划,以下是活动计划书的部分信息:

    读书节活动计划书

    图书类别

    A

    B

    进价

    18/

    12/

    备注

    用不超过16800元购进AB两类图书共1000本;

    ⑵A类图书不少于600本;

    1)陈经理查看计划书时发现:A类图书的销售价是B类图书销售价的1.5倍,若顾客同样用54元购买图书,能购买A类图书数量比B类图书的数量少1本,求AB两类图书的销售价;

    2)为了扩大影响,陈经理调整了销售方案:A类图书每本按原销售价降低2元销售,B类图书价格不变,那么该书店应如何进货才能获得最大利润?

    29.(2022·中山模拟)有一些相同的房间需要粉刷墙面,一名二级技工粉刷6个房间,5天正好完成;一名一级技工3天粉刷了4个房间还多刷了另外的 墙面.每名一级技工比二级技工一天多粉刷 墙面. 

    1求每个房间需要粉刷的墙面面积;

    2)若甲乙两名技工各自需粉刷7个房间的墙面,甲比乙每天少粉刷 ,乙比甲少用2天完成任务,求甲、乙两名技工每天各粉刷墙面面积. 

    30.(2022·坪山模拟)某超市计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:

    水果单价

    进价(元/千克)

    售价(元/千克)

    20

    25

    已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.

    1)求甲、乙两种水果的进价;

    2)若该超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,若全部卖完所购进的这两种水果,则超市应如何进货才能获得最大利润,最大利润是多少?


    答案解析部分

    1.【答案】B

    【解析】【解答】解:设规定时间为x天,
    根据题意得:.

    故答案为:B.


    【分析】设规定时间为x天, 得出用慢马送,需要的时间为(x+1)天,用快马送,所需的时间为(x-3 天,利用快马的速度是慢马的2倍,列出方程即可.

    2.【答案】B

    【解析】【解答】解:设更新技术前每天生产万份疫苗,则更新技术后每天生产万份疫苗,

    依题意得:

    故答案为:B

    【分析】设更新技术前每天生产万份疫苗,则更新技术后每天生产万份疫苗,根据现在生产500万份疫苗所需的时间与更新技术前生产300万份疫苗所需时间相同 列出方程即可。

    3.【答案】A

    【解析】【解答】设甲队每小时检测人,根据题意得,

    故答案为:A

     【分析】根据甲队检测600人所用的时间比乙队检测500人所用的时间少 列出方程即可。

    4.【答案】A

    【解析】【解答】解:方程两边乘xx-3),得8(x-3)=2x

    解得:x=4

    检验:当x=4时,xx-3≠0

    所以x=4是原分式方程的解,

    即原分式方程的解是x=4

    故答案为:A


    【分析】先去分母,再去括号,然后移项、合并同类项,最后系数化为1并检验即可。

    5.【答案】C

    【解析】【解答】解:方程两边同时乘以2x-1),
    2x=1
    x=
    检验:当x=  时,2x-1≠0
    x=是原方程的解.

    故答案为:C.


    【分析】根据解分式方程的步骤进行求解即可.

    6.【答案】C

    【解析】【解答】解:设乙车间每天生产x玩具,则甲车间每天生产(x+10玩具,
    根据题意得:.

    故答案为:C.


    【分析】设乙车间每天生产x玩具,得出甲车间每天生产(x+10玩具,再根据甲乙车间完成任务所用的时间相等列出方程,即可得出答案.

    7.【答案】A

    【解析】【解答】设乙每小时整理x本书,则甲每小时整理(x+5)本书,

    依题意得:

    故答案为:A

    【分析】设乙每小时整理x本书,则甲每小时整理(x+5)本书,根据甲整理80本书所用的时间与乙整理70本书所用的时间相同列出方程即可。

    8.【答案】D

    【解析】【解答】解:不等式组

    (1)

    (2)

    不等式组的解集为

    不等式组有且只有8个整数解,

    解得

    解分式方程

    方程的解为非负数,

    综上可知:

    a是整数,

    故答案为:D

    【分析】解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.

    9.【答案】C

    【解析】【解答】解:分式方程 去分母后得到整式方程

    方程 无实数根,

    方程 无解,

    故整式方程不符合题意,分式方程无解,

    故答案为:C


    【分析】利用一元二次方程根的判别式列出不等式求解即可。

    10.【答案】B

    【解析】【解答】解:A、三角形的外心到三角形三个顶点的距离相等,A不符合题意;

    B、顺次连接对角线相等的四边形各边中点所得的四边形是菱形,B符合题意;

    C

    去分母得,

    解这个整式方程得,x2

    经检验,x2是原方程的增根,

    原方程无解,C不符合题意;

    D、将抛物线y=2x2-2向右平移1个单位后得到的抛物线是y=2x-12-2D不符合题意;

    故答案为:B

    【分析】利用三角形的外心的性质、中点四边形、解分式方程以及抛物线的平移规律分别判断后即可确定正确的选项.

    11.【答案】

    【解析】【解答】解:方程两边同时乘以2x(x+1),得

    3(x+1)=4x

    3x+3=4x

    x=3

    检验:把x=3代入2x(x+1)=2×3(3+1)=24≠0

    原分式方程的解为:x=3

    故答案为:x=3

    【分析】利用解分式方程的方法解方程即可。

    12.【答案】x = 3

    【解析】【解答】解:方程两边同乘以x+1,得3=x+1-1
    解得x=3
    检验:当x=3时,x+1=4≠0
    x=3是原方程的解.
    故答案为:3.
    【分析】方程两边同乘以x+1,把原方程化为整式方程,求出整式方程的解,再进行检验,即可得出答案.

    13.【答案】x=9

    【解析】【解答】解:

    去分母,得

    解得x=9

    检验:经检验x=9是原分式方程的解,

    原方程的解为x=9

    故答案为:x=9

    【分析】利用分式方程的解法求解即可。

    14.【答案】

    【解析】【解答】由,得

    x=2+m

    关于x的方程的解是负数,

    2+m0

    解得m<-2

    (mm+2)在第三象限

    故答案是:三.

    【分析】先求出分式方程的解,再求出m<-2,再根据点坐标与象限的关系可得答案。

    15.【答案】0

    【解析】【解答】方程两边同乘,得

    解得

    分式方程有正整数解

    故答案为:0

    【分析】先利用分式方程的解法求出方程的解,再根据分式方程的解是正整数可得,即,再结合,然后求出m的值即可。

    16.【答案】=

    【解析】【解答】解:设甲每小时搬运的货物为x,则乙每小时搬运的货物为x+600
    两个人搬运货物的时间相同

    【分析】根据题意,由等量关系列出分式方程即可。

    17.【答案】-=2

    【解析】【解答】解:设原计划每天施工x米,则实际每天施工(x+50)米
    根据题意,可以列出方程,
    =2
    【分析】根据题目中的数量关系,列出分式方程即可。

    18.【答案】6

    【解析】【解答】解:由去分母可得:

    方程有增根,

    故答案为-6


    【分析】先将分式方程化成整式方程,再将x=2代入计算求出a的值即可。

    19.【答案】3

    【解析】【解答】解:去分母,得:1+x+m=2x2),即x=m+5

    方程有增根,

    x=2

    m+5=2,解得:m=3

    故答案为:-3

    【分析】先将分式方程化为整式方程,再将x=2代入计算求出m的值即可。

    20.【答案】3

    【解析】【解答】解:去分母得

    当分母为0时,方程无解,即

    时,方程无解,

    故答案为:3

    【分析】先求出,再分类讨论,计算求解即可。

    21.【答案】解:去分母得:

    解得:

    检验:当时,简公分母

    原方程的解是

    【解析】【分析】先去分母,再移项、合并同类项,最后系数化为1并检验即可。

    22.【答案】解:

    方程两边同时乘以(x-4),得3-x=x-4+1

    解得                                 

    检验:当x=3时,

    原分式方程的解.

    【解析】【分析】利用解分式方程的方法解方程即可。

    23.【答案】解:将方程左右两边同时乘以:得:

    解得:

    检验:当时,

    原方程的解是

    【解析】【分析】利用解分式方程的方法解方程即可。

    24.【答案】解:方程两边同乘以,得:

    去括号,得:

    移项、合并同类项,得:

    x的系数化为1,得:

    检验:时,

    所以原方程的解是

    【解析】【分析】先去分母,再去括号,然后移项、合并同类项,最后系数化为1并检验即可。

    25.【答案】解:方程的两边同乘12x2x1),得

    24x2+52x1)=36x2x1),

    整理,得48x246x+50

    解得x1x2

    检验:当x时,x2x1≠0

    即原方程的解为:x1x2

    【解析】【分析】先去分母讲分式方程化为一元二次方程,求解后进行检验可得原方程的解。

    26.【答案】1)解:鲜花店A种鲜花的单价是x元,则B种鲜花的单价为(x-6)元,

    由题意得

    解得x=36

    经检验,x=36是原方程的解,

    x-6=30

    答:该鲜花点A种鲜花的单价是36元,B种鲜花的单价是30元;

    2)解:都购买A种鲜花,费用=10×36+m-10×36=18m+180)元,

    都购买B种鲜花,费用=0.75m×30=22.5m元,

    18m+180>22.5m时,解得m<40,此时都购买B种鲜花合算;

    18m+180=22.5m时,解得m=40,此时都购买A种鲜花或都购买B种鲜花,费用相等;

    18m+180<22.5m时,解得m>40,此时都购买A种鲜花合算;

    综上,当购买数量少于40束时,都购买B种鲜花;当恰好购买40束时,购买A种或B种鲜花费用相等;当购买超过40束时,都购买A种鲜花.

    【解析】【分析】(1)根据题意先求出 再解方程即可;
    2)根据 某公司准备购进m束(m为大于10的偶数)同种鲜花 ,计算求解即可。

    27.【答案】1)解:设甲类型的笔记本电脑单价为x元,则乙类型的笔记本电脑为元.

    由题意得:

    解得:

    经检验是原方程的解,且符合题意.

    乙类型的笔记本电脑单价为:(元).

    答:甲类型的笔记本电脑单价为110元,乙类型的笔记本电脑单价为120元.

    2)解:设甲类型笔记本电脑购买了a件,最低费用为w,则乙类型笔记本电脑购买了件.

    由题意得:

    a越大时w越小.

    时,w最大,最大值为(元).

    答:最低费用为11750元.

    【解析】【分析】(1)先求出,再求解即可;
    2)先求出 再求出w的函数解析式,最后求解即可。

    28.【答案】1)解:设B类图书的标价为x元,则A类图书的标价为1.5x元,

    根据题意可得,

    化简得:540-10x=360

    解得:x=18

    经检验:x=18是原分式方程的解,且符合题意,

    A类图书的标价为:1.5x=1.5×18=27(元),

    答:A类图书的标价为27元,B类图书的标价为18

    2)解:设购进A类图书m本,则购进B类图书(1000-m)本,利润为W

    由题意得:

    解得:600≤m≤800

    W=27-2-18m+18-12)(1000-m

    =m+6000

    Wm的增大而增大,

    m=800时,利润最大.

    1000-m=200

    所以当购进A类图书800本,购进B类图书200本,利润最大.

    【解析】【分析】(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意列出方程求解即可;
    2)设购进A类图书m本,则购进B类图书(1000-m)本,利润为W,根据题意列出函数解析式W=27-2-18m+18-12)(1000-m=m+6000,再利用一次函数的性质求解即可。

    29.【答案】1)解:设每个墙面需要粉刷的墙面面积为  

    由题意得

    解得

    每个墙面需要粉刷的墙面面积为

    2)解:设甲技工每天粉刷的墙面面积为 ,则乙技工每天粉刷的墙面面积为  

    由题意得

    解得 (舍去),

    经检验 是原分式方程的解,

    甲、乙两名技工每天各粉刷墙面面积分别为

    【解析】【分析】(1)设每个墙面需要粉刷的墙面面积为,根据题意列出方程求解即可;
    2)设甲技工每天粉刷的墙面面积为 ,则乙技工每天粉刷的墙面面积为 ,根据题意列出方程求解即可。

    30.【答案】1)解:由题意可知:  

    解得:

    经检验, 是原方程的解,

    答:甲的进价是16/千克,乙的进价是20/千克.

    2)解:假设购买甲a千克,则购买乙 千克,总利润是W元. 

    a越小,W越大,

    时,W最大,为425元.

    答:当超市进甲75千克,进乙25千克时,利润最大,是425元.

    【解析】【分析】(1)根据题意列出方程求解即可;
    2)设购买甲a千克,则购买乙 千克,总利润是W元,根据题意列出函数解析式,再利用一次函数的性质求解即可

    相关试卷

    专题10 分式方程 中考数学一轮复习专题训练(北京专用): 这是一份专题10 分式方程 中考数学一轮复习专题训练(北京专用),共17页。试卷主要包含了单选题,填空题,计算题,综合题等内容,欢迎下载使用。

    专题3 代数式 2023年中考数学一轮复习专题特训(广东专用): 这是一份专题3 代数式 2023年中考数学一轮复习专题特训(广东专用),共19页。试卷主要包含了单选题,填空题,综合题等内容,欢迎下载使用。

    专题20 命题与证明 2023年中考数学一轮复习专题特训(广东专用): 这是一份专题20 命题与证明 2023年中考数学一轮复习专题特训(广东专用),共12页。试卷主要包含了单选题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题10 分式方程 2023年中考数学一轮复习专题特训(广东专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map