|试卷下载
搜索
    上传资料 赚现金
    专题十二函数的性质(B卷·能力提升)-【中职专用】高一数学同步单元测试AB卷(高教版·基础模块上册)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题十二 函数的性质(B卷·能力提升)(原卷版).docx
    • 解析
      专题十二 函数的性质(B卷·能力提升)(解析版).docx
    专题十二函数的性质(B卷·能力提升)-【中职专用】高一数学同步单元测试AB卷(高教版·基础模块上册)01
    专题十二函数的性质(B卷·能力提升)-【中职专用】高一数学同步单元测试AB卷(高教版·基础模块上册)02
    专题十二函数的性质(B卷·能力提升)-【中职专用】高一数学同步单元测试AB卷(高教版·基础模块上册)03
    专题十二函数的性质(B卷·能力提升)-【中职专用】高一数学同步单元测试AB卷(高教版·基础模块上册)01
    专题十二函数的性质(B卷·能力提升)-【中职专用】高一数学同步单元测试AB卷(高教版·基础模块上册)02
    专题十二函数的性质(B卷·能力提升)-【中职专用】高一数学同步单元测试AB卷(高教版·基础模块上册)03
    还剩4页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高教版(中职)基础模块上册第3章 函数3.3 函数的实际应用举例精品单元测试测试题

    展开
    这是一份高中数学高教版(中职)基础模块上册第3章 函数3.3 函数的实际应用举例精品单元测试测试题,文件包含专题十二函数的性质B卷·能力提升解析版docx、专题十二函数的性质B卷·能力提升原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    3.2 函数的性质(B卷·能力提升)

    学校:___________姓名:___________班级:___________考号:___________

    满分:100   考试时间:100分钟

    题号

    总分

    得分

     

     

     

     

    注意事项:

    1答题前填写好自己的姓名、班级、考号等信息

    2请将答案正确填写在答题卡上

     

    第Ⅰ卷(选择题)

    评卷人

      

     

     

    一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1是定义在上的奇函数,若,则   

    A B0 C1 D2

    【答案】A

    【解析】因为fx)是定义在R上的奇函数,所以故选A

    2下列函数中,在区间内不是单调递增的是(

    A   B          C      D

    【答案】C

    【解析】在区间内单调递增;故A不合题意的对称轴为,故在区间内单调递减,在区间内单调递增B不合题意在区间内单调递减,在区间内单调递减;故在区间内不是单调递增的;故C符合题意

    在区间内单调递增,在区间内单调递增;故D不合题意故选C.

    3下列说法中错误的个数为(   

    图象关于坐标原点对称的函数是奇函数;    图象关于y轴对称的函数是偶函数;

    奇函数的图象一定过坐标原点;            偶函数的图象一定与y轴相交.

    A4           B3          C2         D1

    【答案】C

    【解析】由奇函数、偶函数的性质,知①②说法正确;对于,如f(x)x,它是奇函数,但它的图象不过原点,所以说法错误;对于,如f(x)x,它是偶函数,但它的图象不与y轴相交,所以说法错误故选C

    4.函数上的最大值为,则的值为(   

    A B C D

    【答案】C

    【解析】由题意,时,函数上单调递减,,故选C

    5函数为奇函数,为偶函数,在公共定义域内,下列结论一定正确的是(   

    A为奇函数   B为偶函数   C为奇函数  D为偶函数

    【答案】C

    【解析】,则,既不是奇函数,也不是偶函数,故AB错误;令,则,是奇函数,不是偶函数,故C正确、D错误故选C.

    6.偶函数在区间上单调递减,则函数在区间上(   

    A.单调递增,且有最小值 B.单调递增,且有最大值

    C.单调递减,且有最小值 D.单调递减,且有最大值

    【答案】A

    【解析】偶函数在区间上单调递减,则由偶函数的图象关于y轴对称,则有上单调递增,即有最小值为,最大值对照选项,A正确故选A.

    7已知函数在区间上是增函数,则的大小关系是(   

    A   B   C   D

    【答案】D

    【解析】因为在区间上是增函数,并且,所以,所以D选项的正确的故选D.

    8已知二次函数在区间内是单调函数,则实数的取值范围是(   

    A        B           C           D

    【答案】A

    【解析】由题知,当,即时,满足题意故选A.

    9已知函数为定义在上的奇函数,且,则   

    A2019 B3 C.-3 D0

    【答案】D

    【解析】,又f(x)为定义在R上的奇函数,f(0)0故选D.

    10已知定义在R上的函数是偶函数,且在上单调递减,则不等式的解集为(   

    A B      C    D

    【答案】C

    【解析】因为为偶函数,且在上单调递减,所以上单调递增,得,解得,即不等式的解集为故选C.

    第Ⅱ卷(非选择题)

    评卷人

      

     

     

    二、填空题:本题共8小题,每小题3分,共24分.

    11函数的单调增区间为          .

    【答案】(或

    【解析】,得函数的定义域为,则因为函数上为增函数,函数上为增函数所以函数的单调增区间为故答案为(或

    12已知函数R上的奇函数,且当时,,则         

    【答案】

    【解析】时,,故为奇函数,故答案为

    13若函数上是严格增函数,则实数a的取值范围是           .

    【答案】

    【解析】 函数上是严格增函数,故答案为

    14已知分别是定义在R上的偶函数和奇函数,且,则          . 

    【答案】

    【解析】依题意分别是定义在R上的偶函数和奇函数,

    ,即故答案为

    15已知,且函数是奇函数,则          

    【答案】

    【解析】因为函数是奇函数,则,由奇函数的定义可得,可得,因此,故答案为.

    16函数是定义在上的减函数,则满足值的取值范围           .

    【答案】

    【解析】是定义在上,,即 是定义在上的减函数,

    ,即,则值的取值范围为故答案为

    17若函数是定义在上的偶函数,则          .

    【答案】

    【解析】函数是定义在上的偶函数,,即,∴故答案为

    18定义在上的奇函数上是减函数,若,则实数的取值范围为           .

    【答案】

    【解析】是定义在上的奇函数,且在上是减函数 在定义域上是减函数,且

    ,即故可知,即可解得实数的取值范围为故答案为

    评卷人

      

     

     

    三、解答题:本题共6小题,共46分,解答时应写出文字说明、证明过程或者演算步骤.

    196分)已知上的奇函数,且当时,,求的解析式.

    【答案】

    【解析】解:是定义在上的奇函数,所以,当时,,所以

     

    206分)是定义在上的偶函数,当单调递减成立,求的取值范围.

    【答案】1m

    【解析】解:由题意知f(x)图象关于y轴对称,又f(x)[0 2)上单调递减,所以解得-1m

     

    218分)已知函数,且

    1)判断函数的奇偶性;

    2)求的值

    【答案】1为奇函数;(2

    【解析】解:1,即为奇函数;

    2,而,解得

     

    228分)定义在上的偶函数和奇函数满足,求函数的解析式.

    【答案】

    【解析】解:因为 所以.又为偶函数,所以为奇函数,所以,所以联立①②可得

     

    238分)已知函数.

    1)若函数图象过点,求函数的单调递增区间;

    2)若函数是偶函数,求.

    【答案】1;(2

    【解析】解:(1)由题意,,即函数的单调递增区间为

    2函数是偶函数,,即

     

    24.10分)已知函数,且.

    1求实数的值并判断该函数的奇偶性;

    2判断函数上的单调性并证明

    【答案】1,函数为奇函数;(2上是增函数,证明见解析

    【解析】解:1,且所以,定义域为关于原点对称,函数为奇函数.

    2函数上是增函数,

    证明:任取,设,则

    ,且,即上是增函数


     

    相关试卷

    高中数学高教版(中职)基础模块上册第4章 指数函数与对数函数4.4 对数函数4.4.2 对数函数应用举例精品单元测试同步测试题: 这是一份高中数学高教版(中职)基础模块上册第4章 指数函数与对数函数4.4 对数函数4.4.2 对数函数应用举例精品单元测试同步测试题,文件包含专题十七对数函数B卷·能力提升解析版docx、专题十七对数函数B卷·能力提升原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    数学基础模块上册附录2 教材使用的部分数学符号精品单元测试练习题: 这是一份数学基础模块上册附录2 教材使用的部分数学符号精品单元测试练习题,文件包含专题十六对数B卷·能力提升解析版docx、专题十六对数B卷·能力提升原卷版docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。

    高中数学高教版(中职)基础模块上册4.2.2 指数函数应用举例精品单元测试当堂达标检测题: 这是一份高中数学高教版(中职)基础模块上册4.2.2 指数函数应用举例精品单元测试当堂达标检测题,文件包含专题十五指数函数B卷·能力提升解析版docx、专题十五指数函数B卷·能力提升原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题十二函数的性质(B卷·能力提升)-【中职专用】高一数学同步单元测试AB卷(高教版·基础模块上册)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map