江西省吉安永丰县联考2021-2022学年中考数学模拟精编试卷含解析
展开
这是一份江西省吉安永丰县联考2021-2022学年中考数学模拟精编试卷含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,一次函数的图象不经过等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为( )
A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人
2.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=,∠ADC=,则竹竿AB与AD的长度之比为
A. B. C. D.
3.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=的图象经过点D,则k值为( )
A.﹣14 B.14 C.7 D.﹣7
4.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是( )
A.a+b>0 B.ab >0 C. D.
5.如图的平面图形绕直线l旋转一周,可以得到的立体图形是( )
A. B. C. D.
6.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
A. B.
C. D.
7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A.角的内部到角的两边的距离相等的点在角的平分线上
B.角平分线上的点到这个角两边的距离相等
C.三角形三条角平分线的交点到三条边的距离相等
D.以上均不正确
8.一次函数的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.下列图形中,阴影部分面积最大的是
A. B. C. D.
10.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:
(1)出租车的速度为100千米/时;
(2)客车的速度为60千米/时;
(3)两车相遇时,客车行驶了3.75小时;
(4)相遇时,出租车离甲地的路程为225千米.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(共7小题,每小题3分,满分21分)
11.若关于的一元二次方程有两个不相等的实数根,则的取值范围为__________.
12.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.做法中用到全等三角形判定的依据是______.
13.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.
14.如图,AB是⊙O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若∠C=30°,⊙O的半径是2,则图形中阴影部分的面积是_____.
15.的相反数是______,的倒数是______.
16.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.
17.若3,a,4,5的众数是4,则这组数据的平均数是_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC=∠BAC.求证:DE是⊙O的切线;若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.
19.(5分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
20.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC关于轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.
21.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:
信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;
信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
生产甲产品数(件)
生产乙产品数(件)
所用时间(分钟)
10
10
350
30
20
850
信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.
信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;
(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?
22.(10分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)
23.(12分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.
(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为
(2)请把图2(条形统计图)补充完整;
(3)该校学生共600人,则参加棋类活动的人数约为 .
(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.
24.(14分) 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.
(1)求抛物线的解析式;
(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
用科学记数法表示16000,应记作1.6×104,
故选A.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、B
【解析】
在两个直角三角形中,分别求出AB、AD即可解决问题;
【详解】
在Rt△ABC中,AB=,
在Rt△ACD中,AD=,
∴AB:AD=:=,
故选B.
【点睛】
本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.
3、B
【解析】
过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,
∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,
∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,
∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k,故选B.
4、C
【解析】
本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.
【详解】
A、因为b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故选项A错误;
B、因为b<0<a,所以ab<0,故选项B错误;
C、因为b<-1<0<a<1,所以+>0,故选项C正确;
D、因为b<-1<0<a<1,所以->0,故选项D错误.
故选C.
【点睛】
本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.
5、B
【解析】
根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.
【详解】
由图可知所给的平面图形是一个长方形,
长方形绕一边所在直线旋转一周得圆柱,
故选B.
【点睛】
本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.
6、A
【解析】
若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
解:设走路线一时的平均速度为x千米/小时,
故选A.
7、A
【解析】
过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB
【详解】
如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,
∵两把完全相同的长方形直尺,
∴CE=CF,
∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),
故选A.
【点睛】
本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.
8、B
【解析】
由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限
【详解】
解:∵,
∴函数图象一定经过一、三象限;
又∵,函数与y轴交于y轴负半轴,
∴函数经过一、三、四象限,不经过第二象限
故选B
【点睛】
此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响
9、C
【解析】
分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可:
【详解】
A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=1.
B、根据反比例函数系数k的几何意义,阴影部分面积和为:.
C、如图,过点M作MA⊥x轴于点A,过点N作NB⊥x轴于点B,
根据反比例函数系数k的几何意义,S△OAM=S△OAM=,从而阴影部分面积和为梯形MABN的面积:.
D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:.
综上所述,阴影部分面积最大的是C.故选C.
10、D
【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
【详解】
由图象可得,
出租车的速度为:600÷6=100千米/时,故(1)正确,
客车的速度为:600÷10=60千米/时,故(2)正确,
两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,
相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,
故选D.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
二、填空题(共7小题,每小题3分,满分21分)
11、.
【解析】
根据判别式的意义得到,然后解不等式即可.
【详解】
解:关于的一元二次方程有两个不相等的实数根,
,
解得:,
故答案为:.
【点睛】
此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.
12、SSS.
【解析】
由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.
【详解】
由图可知,CM=CN,又OM=ON,
∵在△MCO和△NCO中
,
∴△COM≌△CON(SSS),
∴∠AOC=∠BOC,
即OC是∠AOB的平分线.
故答案为:SSS.
【点睛】
本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.
13、0
相关试卷
这是一份山东省东营邹平县联考2021-2022学年中考数学模拟精编试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份江西省鹰潭市名校2021-2022学年中考数学模拟精编试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,的倒数的绝对值是,计算36÷等内容,欢迎下载使用。
这是一份江西省南昌育华校2021-2022学年中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角尺,-5的相反数是等内容,欢迎下载使用。