终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    山东省东营邹平县联考2021-2022学年中考数学模拟精编试卷含解析

    立即下载
    加入资料篮
    山东省东营邹平县联考2021-2022学年中考数学模拟精编试卷含解析第1页
    山东省东营邹平县联考2021-2022学年中考数学模拟精编试卷含解析第2页
    山东省东营邹平县联考2021-2022学年中考数学模拟精编试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省东营邹平县联考2021-2022学年中考数学模拟精编试卷含解析

    展开

    这是一份山东省东营邹平县联考2021-2022学年中考数学模拟精编试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列计算正确的是(  )
    A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2•a4=a6
    2.如图,函数y=的图象记为c1,它与x轴交于点O和点A1;将c1绕点A1旋转180°得c2,交x轴于点A2;将c2绕点A2旋转180°得c3,交x轴于点A3…如此进行下去,若点P(103,m)在图象上,那么m的值是(  )

    A.﹣2 B.2 C.﹣3 D.4
    3.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是(  )
    A.中位数不相等,方差不相等
    B.平均数相等,方差不相等
    C.中位数不相等,平均数相等
    D.平均数不相等,方差相等
    4.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为(  )
    A.3122×10 8元 B.3.122×10 3元
    C.3122×10 11 元 D.3.122×10 11 元
    5.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是(  )
    A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×107
    6.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为(  )
    A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣10
    7.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是(  )

    A.60° B.35° C.30.5° D.30°
    8.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是(  )
    劳动时间(小时)
    3
    3.5
    4
    4.5
    人  数
    1
    1
    3
    2
    A.中位数是4,众数是4 B.中位数是3.5,众数是4
    C.平均数是3.5,众数是4 D.平均数是4,众数是3.5
    9.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )

    A.94分,96分 B.96分,96分
    C.94分,96.4分 D.96分,96.4分
    10.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是(  )

    A.50° B.60° C.70° D.80°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.
    12.如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=_______.

    13.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是______m.

    14.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.

    15.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.
    16.如图,的半径为1,正六边形内接于,则图中阴影部分图形的面积和为________(结果保留).

    三、解答题(共8题,共72分)
    17.(8分)请根据图中提供的信息,回答下列问题:

    (1)一个水瓶与一个水杯分别是多少元?
    (2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
    18.(8分)如图,在矩形ABCD的外侧,作等边三角形ADE,连结BE,CE,求证:BE=CE.

    19.(8分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
    填空:∠AHC   ∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,
    ①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
    ②请直接写出使△CGH是等腰三角形的m值.
    20.(8分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.

    21.(8分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;将线段绕点逆时针旋转90°得到线段.画出线段;以为顶点的四边形的面积是 个平方单位.

    22.(10分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.求11月份这两种水果的进价分别为每千克多少元?时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值.
    23.(12分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:
    (1)小新的速度为_____米/分,a=_____;并在图中画出y2与x的函数图象
    (2)求小新路过小华家后,y1与x之间的函数关系式.
    (3)直接写出两人离小华家的距离相等时x的值.

    24.已知抛物线y=ax2+bx+c.
    (Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
    ①求该抛物线的解析式;
    ②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
    设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
    (Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.
    【详解】
    ∵3a﹣2a=a,∴选项A不正确;
    ∵a2+a5≠a7,∴选项B不正确;
    ∵(ab)3=a3b3,∴选项C不正确;
    ∵a2•a4=a6,∴选项D正确.
    故选D.
    【点睛】
    本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.
    2、C
    【解析】
    求出与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线平移的距离,再根据向右平移横坐标加表示出抛物线的解析式,然后把点P的坐标代入计算即可得解.
    【详解】
    令,则=0,
    解得,

    由图可知,抛物线在x轴下方,
    相当于抛物线向右平移4×(26−1)=100个单位得到得到,再将绕点旋转180°得,
    此时的解析式为y=(x−100)(x−100−4)=(x−100)(x−104),
    在第26段抛物线上,
    m=(103−100)(103−104)=−3.
    故答案是:C.
    【点睛】
    本题考查的知识点是二次函数图象与几何变换,解题关键是根据题意得到p点所在函数表达式.
    3、D
    【解析】
    分别利用平均数以及方差和中位数的定义分析,进而求出答案.
    【详解】
    2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为: [(2﹣3)2+(3﹣3)2+(3﹣4)2]= ;
    3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为: [(3﹣4)2+(4﹣4)2+(5﹣4)2]= ;
    故中位数不相等,方差相等.
    故选:D.
    【点睛】
    本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.
    4、D
    【解析】
    可以用排除法求解.
    【详解】
    第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.
    【点睛】
    牢记科学记数法的规则是解决这一类题的关键.
    5、B
    【解析】
    试题解析:0.00 000 069=6.9×10-7,
    故选B.
    点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    6、C
    【解析】
    本题根据科学记数法进行计算.
    【详解】
    因为科学记数法的标准形式为a×(1≤|a|≤10且n为整数),因此0.000000007用科学记数法法可表示为7×,
    故选C.
    【点睛】
    本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.
    7、D
    【解析】
    根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
    【详解】
    连接OB,
    ∵点B是弧的中点,
    ∴∠AOB= ∠AOC=60°,
    由圆周角定理得,∠D= ∠AOB=30°,
    故选D.

    【点睛】
    此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
    8、A
    【解析】
    根据众数和中位数的概念求解.
    【详解】
    这组数据中4出现的次数最多,众数为4,
    ∵共有7个人,
    ∴第4个人的劳动时间为中位数,
    所以中位数为4,
    故选A.
    【点睛】
    本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    9、D
    【解析】
    解:总人数为6÷10%=60(人),
    则91分的有60×20%=12(人),
    98分的有60-6-12-15-9=18(人),
    第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;
    这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60
    =(552+1128+1110+1761+900)÷60
    =5781÷60
    =96.1.
    故选D.
    【点睛】
    本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键.
    10、C
    【解析】
    连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。
    【详解】
    连接BC.
    ∵PA,PB是圆的切线

    在四边形中,




    所以
    ∵是直径


    故答案选C.

    【点睛】
    本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    根据概率的公式进行计算即可.
    【详解】
    从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.
    故答案为:.
    【点睛】
    考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
    12、34°
    【解析】
    分析:首先根据垂径定理得出∠BOD的度数,然后根据三角形内角和定理得出∠D的度数.
    详解:∵直径AB⊥弦CD, ∴∠BOD=2∠A=56°, ∴∠D=90°-56°=34°.
    点睛:本题主要考查的是圆的垂径定理,属于基础题型.求出∠BOD的度数是解题的关键.
    13、135
    【解析】
    试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.
    考点:解直角三角形的应用.
    14、1
    【解析】
    过点C作CH∥AB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值.
    【详解】
    如下图,过点C作CH∥AB交DE的延长线于点H,
    则,

    ∵DF∥CH,
    ∴,
    ∴,
    ∴,
    同理,
    ∴,
    ∴,解得t=1,t=(舍去),
    故答案为:1.
    【点睛】
    本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.
    15、
    【解析】
    分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.
    详解:∵关于x、y的二元一次方程组的解是,
    ∴将解代入方程组
    可得m=﹣1,n=2
    ∴关于a、b的二元一次方程组整理为:
    解得:
    点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.
    16、.
    【解析】
    连接OA,OB,OC,则根据正六边形内接于可知阴影部分的面积等于扇形OAB的面积,计算出扇形OAB的面积即可.
    【详解】
    解:如图所示,连接OA,OB,OC,
    ∵正六边形内接于
    ∴∠AOB=60°,四边形OABC是菱形,
    ∴AG=GC,OG=BG,∠AGO=∠BGC
    ∴△AGO≌△BGC.
    ∴△AGO的面积=△BGC的面积
    ∵弓形DE的面积=弓形AB的面积
    ∴阴影部分的面积=弓形DE的面积+△ABC的面积
    =弓形AB的面积+△AGB的面积+△BGC的面积
    =弓形AB的面积+△AGB的面积+△AGO的面积
    =扇形OAB的面积=
    =
    故答案为.

    【点睛】
    本题考查了扇形的面积计算公式,利用数形结合进行转化是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.
    【解析】
    (1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;
    (2)计算出两商场得费用,比较即可得到结果.
    【详解】
    解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,
    根据题意得:3x+4(48﹣x)=152,
    解得:x=40,
    则一个水瓶40元,一个水杯是8元;
    (2)甲商场所需费用为(40×5+8n)×80%=160+6.4n
    乙商场所需费用为5×40+(n﹣5×2)×8=120+8n
    则∵n>10,且n为整数,
    ∴160+6.4n﹣(120+8n)=40﹣1.6n
    讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,
    ∴选择乙商场购买更合算.
    当n>25时,40﹣1.6n<0,即 160+0.64n<120+8n,
    ∴选择甲商场购买更合算.
    【点睛】
    此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.
    18、证明见解析.
    【解析】
    要证明BE=CE,只要证明△EAB≌△EDC即可,根据题意目中的条件,利用矩形的性质和等边三角形的性质可以得到两个三角形全等的条件,从而可以解答本题.
    【详解】
    证明:∵四边形ABCD是矩形,
    ∴AB=CD,∠BAD=∠CDA=90°,
    ∵△ADE是等边三角形,
    ∴AE=DE,∠EAD=∠EDA=60°,
    ∴∠EAD=∠EDC,
    在△EAB和△EDC中,

    ∴△EAB≌△EDC(SAS),
    ∴BE=CE.
    【点睛】
    本题考查矩形的性质、等边三角形的性质、全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    19、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..
    【解析】
    (1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;
    (2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;
    (3)①△AGH的面积不变.理由三角形的面积公式计算即可;
    ②分三种情形分别求解即可解决问题.
    【详解】
    (1)∵四边形ABCD是正方形,
    ∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,
    ∴AC=,
    ∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,
    ∴∠AHC=∠ACG.
    故答案为=.
    (2)结论:AC2=AG•AH.
    理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
    ∴△AHC∽△ACG,
    ∴,
    ∴AC2=AG•AH.
    (3)①△AGH的面积不变.
    理由:∵S△AGH=•AH•AG=AC2=×(4)2=1.
    ∴△AGH的面积为1.
    ②如图1中,当GC=GH时,易证△AHG≌△BGC,

    可得AG=BC=4,AH=BG=8,
    ∵BC∥AH,
    ∴,
    ∴AE=AB=.
    如图2中,当CH=HG时,

    易证AH=BC=4,
    ∵BC∥AH,
    ∴=1,
    ∴AE=BE=2.
    如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.

    在BC上取一点M,使得BM=BE,
    ∴∠BME=∠BEM=43°,
    ∵∠BME=∠MCE+∠MEC,
    ∴∠MCE=∠MEC=22.3°,
    ∴CM=EM,设BM=BE=m,则CM=EMm,
    ∴m+m=4,
    ∴m=4(﹣1),
    ∴AE=4﹣4(﹣1)=8﹣4,
    综上所述,满足条件的m的值为或2或8﹣4.
    【点睛】
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
    20、证明见解析.
    【解析】
    试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.
    试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.
    考点:平行四边形的判定与性质.
    21、(1)画图见解析;(2)画图见解析;(3)20
    【解析】
    【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;
    (2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;
    (3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.
    【详解】(1)如图所示;
    (2)如图所示;
    (3)结合网格特点易得四边形AA1 B1 A2是正方形,
    AA1=,
    所以四边形AA1 B1 A2的面积为:=20,
    故答案为20.

    【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.
    22、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.
    【解析】
    (1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,
    依题意有, 解得,
    答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;
    (2)依题意有:8(1﹣m%)×400(1+m%)+20(1﹣m%)×100(1+2m%)=15200,
    解得m1=0(舍去),m2=49.1,
    故m的值为49.1.
    23、(1)60;960;图见解析;(2)y1=60x﹣240(4≤x≤20);
    (3)两人离小华家的距离相等时,x的值为2.4或12.
    【解析】
    (1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y2与x的函数图象;
    (2)设所求函数关系式为y1=kx+b,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;
    (3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x的值即可.
    【详解】
    (1)由图可知,小新离小华家240米,用4分钟到达,则速度为240÷4=60米/分,
    小新按此速度再走16分钟到达书店,则a=16×60=960米,
    小华到书店的时间为960÷40=24分钟,
    则y2与x的函数图象为:

    故小新的速度为60米/分,a=960;
    (2)当4≤x≤20时,设所求函数关系式为y1=kx+b(k≠0),
    将点(4,0),(20,960)代入得:

    解得:,
    ∴y1=60x﹣240(4≤x≤20时)
    (3)由图可知,小新到小华家之前的函数关系式为:y=240﹣6x,
    ①当两人分别在小华家两侧时,若两人到小华家距离相同,
    则240﹣6x=40x,
    解得:x=2.4;
    ②当小新经过小华家并追上小华时,两人到小华家距离相同,
    则60x﹣240=40x,
    解得:x=12;
    故两人离小华家的距离相等时,x的值为2.4或12.
    24、(Ⅰ)①y=x2+3x②当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
    【解析】
    (I)①由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
    【详解】
    (I)①设抛物线的解析式为y=a(x+2)2﹣3,
    ∵抛物线经过点B(﹣3,0),
    ∴0=a(﹣3+2)2﹣3,
    解得:a=1,
    ∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
    ②设直线AB的解析式为y=kx+m(k≠0),
    将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
    得:,解得:,
    ∴直线AB的解析式为y=﹣2x﹣2.
    ∵直线l与AB平行,且过原点,
    ∴直线l的解析式为y=﹣2x.
    当点P在第二象限时,x<0,如图所示.
    S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
    ∴S=S△POB+S△AOB=﹣3x+2(x<0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围是≤x≤.
    当点P′在第四象限时,x>0,
    过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
    S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
    ∵S△ABE=×2×3=3,
    ∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围为≤x≤.
    综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
    (II)ac≤1,理由如下:
    ∵当x=c时,y=0,
    ∴ac2+bc+c=0,
    ∵c>1,
    ∴ac+b+1=0,b=﹣ac﹣1.
    由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
    把x=0代入y=ax2+bx+c,得y=c,
    ∴抛物线与y轴的交点为(0,c).
    ∵a>0,
    ∴抛物线开口向上.
    ∵当0<x<c时,y>0,
    ∴抛物线的对称轴x=﹣≥c,
    ∴b≤﹣2ac.
    ∵b=﹣ac﹣1,
    ∴﹣ac﹣1≤﹣2ac,
    ∴ac≤1.

    【点睛】
    本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.

    相关试卷

    山东省枣庄市山亭区2021-2022学年中考数学模拟精编试卷含解析:

    这是一份山东省枣庄市山亭区2021-2022学年中考数学模拟精编试卷含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,正确的是,下列计算正确的是,下面运算结果为的是,下列运算错误的是等内容,欢迎下载使用。

    江西省吉安永丰县联考2021-2022学年中考数学模拟精编试卷含解析:

    这是一份江西省吉安永丰县联考2021-2022学年中考数学模拟精编试卷含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,一次函数的图象不经过等内容,欢迎下载使用。

    2022届山东省菏泽定陶县联考中考数学模拟精编试卷含解析:

    这是一份2022届山东省菏泽定陶县联考中考数学模拟精编试卷含解析,共15页。试卷主要包含了若,则的值为,下列各式,计算的结果是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map