福建省厦门市思明区莲花中学2021-2022学年中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图图形中,是中心对称图形的是( )
A. B. C. D.
2.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=( )
A.15° B.30° C.45° D.60°
3.如果向北走6km记作+6km,那么向南走8km记作( )
A.+8km B.﹣8km C.+14km D.﹣2km
4.若a+|a|=0,则等于( )
A.2﹣2a B.2a﹣2 C.﹣2 D.2
5.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )
A.垂线段最短 B.经过一点有无数条直线
C.两点之间,线段最短 D.经过两点,有且仅有一条直线
6.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是( )
A.若这5次成绩的中位数为8,则x=8
B.若这5次成绩的众数是8,则x=8
C.若这5次成绩的方差为8,则x=8
D.若这5次成绩的平均成绩是8,则x=8
7.下列计算正确的是
A. B. C. D.
8.下列哪一个是假命题( )
A.五边形外角和为360°
B.切线垂直于经过切点的半径
C.(3,﹣2)关于y轴的对称点为(﹣3,2)
D.抛物线y=x2﹣4x+2017对称轴为直线x=2
9.如图,正比例函数y=x与反比例函数的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于的函数值时,x的取值范围是( )
A.x>2 B.x<﹣2
C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2
10.下列图案中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式a3﹣6a2+9a=_________________.
12.如图,Rt△ABC中,若∠C=90°,BC=4,tanA=,则AB=___.
13.一辆汽车在坡度为的斜坡上向上行驶130米,那么这辆汽车的高度上升了__________米.
14.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= .
15.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=_____.
16.已知关于x的一元二次方程有两个相等的实数根,则a的值是______.
三、解答题(共8题,共72分)
17.(8分)如图,已知△ABC,请用尺规作图,使得圆心到△ABC各边距离相等(保留作图痕迹,不写作法).
18.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:
摸球总
次数
10
20
30
60
90
120
180
240
330
450
“和为8”出
现的频数
2
10
13
24
30
37
58
82
110
150
“和为8”出
现的频率
0.20
0.50
0.43
0.40
0.33
0.31
0.32
0.34
0.33
0.33
解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?
19.(8分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.
20.(8分)将如图所示的牌面数字分别是1,2,3,4 的四张扑克牌背面朝上,洗匀后放在桌面上.
从中随机抽出一张牌,牌面数字是偶数的概率是_____;先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是 4 的倍数的概率.
21.(8分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;
(2)先化简,再求值:÷(2+),其中a= .
22.(10分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).
①求a的值;
②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.
23.(12分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.
(1)如图1,连接AB′.
①若△AEB′为等边三角形,则∠BEF等于多少度.
②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.
(2)如图2,连接CB′,求△CB′F周长的最小值.
(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.
24.如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据中心对称图形的概念和识别.
【详解】
根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.
故选D.
【点睛】
本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.
2、B
【解析】
根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.
【详解】
解:∵OA=AB,OA=OB,
∴△AOB是等边三角形,
∴∠AOB=60°,
∴∠ACB=30°,
故选B.
【点睛】
本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
3、B
【解析】
正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来
【详解】
解:向北和向南互为相反意义的量.
若向北走6km记作+6km,
那么向南走8km记作﹣8km.
故选:B.
【点睛】
本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.
4、A
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
∵a+|a|=0,
∴|a|=-a,
则a≤0,
故原式=2-a-a=2-2a.
故选A.
【点睛】
此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
5、C
【解析】
用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选C.
【点睛】
根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.
6、D
【解析】
根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.
【详解】
A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;
B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;
C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;
D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;
故选D.
【点睛】
本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
7、B
【解析】
试题分析:根据合并同类项的法则,可知,故A不正确;
根据同底数幂的除法,知,故B正确;
根据幂的乘方,知,故C不正确;
根据完全平方公式,知,故D不正确.
故选B.
点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.
8、C
【解析】
分析:
根据每个选项所涉及的数学知识进行分析判断即可.
详解:
A选项中,“五边形的外角和为360°”是真命题,故不能选A;
B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;
C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;
D选项中,“抛物线y=x2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.
故选C.
点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线: 等数学知识,是正确解答本题的关键.
9、D
【解析】
试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于的函数值.故选D.
考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用.
10、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项正确;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选B.
【点睛】
考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、a(a﹣3)1 .
【解析】
a3﹣6a1+9a
=a(a1﹣6a+9)
=a(a﹣3)1.
故答案为a(a﹣3)1.
12、1.
【解析】
在Rt△ABC中,已知tanA,BC的值,根据tanA=,可将AC的值求出,再由勾股定理可将斜边AB的长求出.
【详解】
解:Rt△ABC中,∵BC=4,tanA=
∴
则
故答案为1.
【点睛】
考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.
13、50.
【解析】
根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.
【详解】
解:如图,米
,
设,则,
则,
解得,
故答案为:50.
【点睛】
本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.
14、31°.
【解析】
试题分析:由AB∥CD,根据平行线的性质得∠1=∠EFD=62°,然后根据角平分线的定义即可得到∠2的度数.
∵AB∥CD,
∴∠1=∠EFD=62°,
∵FG平分∠EFD,
∴∠2=∠EFD=×62°=31°.
故答案是31°.
考点:平行线的性质.
15、1
【解析】
方程常数项移到右边,两边加上25配方得到结果,求出m与n的值即可.
【详解】
解:∵x2+10x-11=0,
∴x2+10x=11,
则x2+10x+25=11+25,即(x+5)2=36,
∴m=5、n=36,
∴m+n=1,
故答案为1.
【点睛】
此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.
16、.
【解析】
试题分析:∵关于x的一元二次方程有两个相等的实数根,
∴.
考点:一元二次方程根的判别式.
三、解答题(共8题,共72分)
17、见解析
【解析】
分别作∠ABC和∠ACB的平分线,它们的交点O满足条件.
【详解】
解:如图,点O为所作.
【点睛】
本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
18、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.
【解析】
(1)利用频率估计概率结合表格中数据得出答案即可;
(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.
【详解】
解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,
故出现“和为8”的概率是0.33.
(2)x的值不能为7.理由:假设x=7,
则P(和为9)=≠,所以x的值不能为7.
【点睛】
此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.
19、(1)详见解析;(2)1+
【解析】
(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.
【详解】
(1)证明:连结.如图,
与相切于点D,
是的直径,
即
(2)解:在中,
.
【点睛】
此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
20、 (1);(2).
【解析】
(1)直接利用概率公式求解即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.
【详解】
(1) 从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,
∴P(牌面是偶数)==;
故答案为:;
(2)根据题意,画树状图:
可知,共有种等可能的结果,其中恰好是的倍数的共有种,
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
21、(1)5+;(2)
【解析】
试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;
(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.
试题解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;
(2)原式==,
当a=时,原式==.
22、 (1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①;②k的取值范围是≤k≤或k=﹣1.
【解析】
(1)化成顶点式即可求得;
(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;
②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;
【详解】
(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,
∴顶点为(﹣1,﹣1);
(2)①∵二次函数C1的图象经过点A(﹣3,1),
∴a(﹣3+1)2﹣1=1,
∴a=;
②∵A(﹣3,1),对称轴为直线x=﹣1,
∴B(1,1),
当k>0时,
二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=,
二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=,
∴≤k≤,
当k<0时,∵二次函数C2:y2=kx2+kx=k(x+)2﹣k,
∴﹣k=1,
∴k=﹣1,
综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是≤k≤或k=﹣1.
【点睛】
本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.
23、(1)①∠BEF=60°;②A B'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.
【解析】
(1)①当△AEB′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF= ∠BE B′= ×120°=60°;②依据AE=B′E,可得∠EA B′=∠E B′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BA B′,进而得出EF∥A B′;
(2)由折叠可得,CF+ B′F=CF+BF=BC=10,依据B′E+ B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;
(3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.
【详解】
(1)①当△AE B′为等边三角形时,∠AE B′=60°,
由折叠可得,∠BEF=∠BE B′=×120°=60°,
故答案为60;
②A B′∥EF,
证明:∵点E是AB的中点,
∴AE=BE,
由折叠可得BE=B′E,
∴AE=B′E,
∴∠EA B′=∠E B′A,
又∵∠BEF=∠B′EF,
∴∠BEF=∠BA B′,
∴EF∥A B′;
(2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,
∴CF+ B′F=CF+BF=BC=10,
∵B′E+ B′C≥CE,
∴B′C≥CE﹣B′E=5﹣5,
∴B′C最小值为5﹣5,
∴△CB′F周长的最小值=10+5﹣5=5+5;
(3)如图,连接A B′,易得∠A B′B=90°,
将△AB B′和△AP B′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,
由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,
由AB=10,B B′=6,可得A B′=8,
∴QM=QN=A B′=8,
设P B′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.
∵∠BQP=90°,
∴22+(8﹣x)2=(6+x)2,
解得:x=,
∴P B′=x=.
【点睛】
本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
24、
【解析】
过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CBD,得出CD=PD•tan37°;再根据CD﹣BD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在△APE中利用三角函数的定义即可求解.
【详解】
解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.
在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
∴BD=PD•tan∠BPD=PD•tan26.6°.
在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,
∴CD=PD•tan∠CPD=PD•tan37°.
∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=1.
∴0.75PD﹣0.50PD=1,解得PD=2.
∴BD=PD•tan26.6°≈2×0.50=3.
∵OB=220,∴PE=OD=OB﹣BD=4.
∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.
∴.
2023-2024学年福建省厦门市思明区莲花中学八年级(下)期中数学试卷(含解析): 这是一份2023-2024学年福建省厦门市思明区莲花中学八年级(下)期中数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年福建省厦门市思明区湖里中学中考数学二模试卷(含解析): 这是一份2023年福建省厦门市思明区湖里中学中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年福建省厦门市思明区莲花中学九年级(上)期中数学试卷(含解析): 这是一份2022-2023学年福建省厦门市思明区莲花中学九年级(上)期中数学试卷(含解析),共21页。试卷主要包含了0分,5°,0分),0分),【答案】B等内容,欢迎下载使用。