福建省厦门市思明区双十中学2022年中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,函数y=kx+b(k≠0)与y= (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx+b>的解集为( )
A. B. C. D.
2.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=( )
A.16 B.18 C.20 D.24
3.计算﹣的结果为( )
A. B. C. D.
4.如图,下列条件不能判定△ADB∽△ABC的是( )
A.∠ABD=∠ACB B.∠ADB=∠ABC
C.AB2=AD•AC D.
5.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是( ).
A. B. C. D.
6.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )
A. cm B.3cm C.4cm D.4cm
7.4的平方根是( )
A.2 B.±2 C.8 D.±8
8.九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是
A. B. C. D.
9.如图所示的图形,是下面哪个正方体的展开图( )
A. B. C. D.
10.下列运算正确的是( )
A.a﹣3a=2a B.(ab2)0=ab2 C.= D.×=9
11.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为( )
A. B. C. D.
12.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分解因式:a3﹣a=_____.
14.比较大小:3_________ (填<,>或=).
15.已知直线与抛物线交于A,B两点,则_______.
16.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.
17.已知二次函数的部分图象如图所示,则______;当x______时,y随x的增大而减小.
18.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C.
(1)当A(﹣1,0),C(0,﹣3)时,求抛物线的解析式和顶点坐标;
(2)P(m,t)为抛物线上的一个动点.
①当点P关于原点的对称点P′落在直线BC上时,求m的值;
②当点P关于原点的对称点P′落在第一象限内,P′A2取得最小值时,求m的值及这个最小值.
20.(6分)如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=,CD=a,请用a表示⊙O的半径;
(3)求证:GF2﹣GB2=DF•GF.
21.(6分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.
(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?
(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.
22.(8分)计算:.
23.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形AECF的周长.
24.(10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.
(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
i)求证:△CAE∽△CBF;
ii)若BE=1,AE=2,求CE的长;
(2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值;
(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
25.(10分)﹣(﹣1)2018+﹣()﹣1
26.(12分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)
27.(12分)计算:(1-n)0-|3-2 |+(- )-1+4cos30°.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据函数的图象和交点坐标即可求得结果.
【详解】
解:不等式kx+b> 的解集为:-6<x<0或x>2,
故选B.
【点睛】
此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.
2、B
【解析】
【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.
【详解】∵EF∥BC,
∴△AEF∽△ABC,
∵AB=3AE,
∴AE:AB=1:3,
∴S△AEF:S△ABC=1:9,
设S△AEF=x,
∵S四边形BCFE=16,
∴,
解得:x=2,
∴S△ABC=18,
故选B.
【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.
3、A
【解析】
根据分式的运算法则即可
【详解】
解:原式=,
故选A.
【点睛】
本题主要考查分式的运算。
4、D
【解析】
根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.
【详解】
解:A、∵∠ABD=∠ACB,∠A=∠A,
∴△ABC∽△ADB,故此选项不合题意;
B、∵∠ADB=∠ABC,∠A=∠A,
∴△ABC∽△ADB,故此选项不合题意;
C、∵AB2=AD•AC,
∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;
D、=不能判定△ADB∽△ABC,故此选项符合题意.
故选D.
【点睛】
点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.
5、C
【解析】
根据中位数的定义进行解答
【详解】
将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.
【点睛】
本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.
6、C
【解析】
利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.
【详解】
L==4π(cm);
圆锥的底面半径为4π÷2π=2(cm),
∴这个圆锥形筒的高为(cm).
故选C.
【点睛】
此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.
7、B
【解析】
依据平方根的定义求解即可.
【详解】
∵(±1)1=4,
∴4的平方根是±1.
故选B.
【点睛】
本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.
8、B
【解析】
解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:.故选B.
点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.
9、D
【解析】
根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.
【详解】
A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:
B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;
C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.
D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;
故选D.
【点睛】
本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.
10、D
【解析】
直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.
【详解】
解:A、a﹣3a=﹣2a,故此选项错误;
B、(ab2)0=1,故此选项错误;
C、故此选项错误;
D、×=9,正确.
故选D.
【点睛】
此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.
11、C
【解析】
试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.
故选C
12、B
【解析】
试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积==10π .故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、a(a+1)(a﹣1)
【解析】
解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).
14、<
【解析】
【分析】根据实数大小比较的方法进行比较即可得答案.
【详解】∵32=9,9<10,
∴3<,
故答案为:<.
【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.
15、
【解析】
将一次函数解析式代入二次函数解析式中,得出关于x的一元二次方程,根据根与系数的关系得出“x +x =- = ,xx= =-1”,将原代数式通分变形后代入数据即可得出结论.
【详解】
将代入到中得,,整理得,,∴,,
∴.
【点睛】
此题考查了二次函数的性质和一次函数的性质,解题关键在于将一次函数解析式代入二次函数解析式
16、2﹣
【解析】
过点F作FE⊥AD于点E,则AE=AD=AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF-S△ADF可得出其面积,再根据S阴影=2(S扇形BAF-S弓形AF)即可得出结论
【详解】
如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为2,
∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.
∴S弓形AF=S扇形ADF-S△ADF=,
∴ S阴影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.
【点睛】
本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.
17、3, >1
【解析】
根据函数图象与x轴的交点,可求出c的值,根据图象可判断函数的增减性.
【详解】
解:因为二次函数的图象过点.
所以,
解得.
由图象可知:时,y随x的增大而减小.
故答案为(1). 3, (2). >1
【点睛】
此题考查二次函数图象的性质,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.
18、288°
【解析】
母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.
【详解】
解:如图所示,在Rt△SOA中,SO=9,SA=15;
则:
设侧面属开图扇形的国心角度数为n,则由 得n=288°
故答案为:288°.
【点睛】
本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)抛物线的解析式为y=x3﹣3x﹣1,顶点坐标为(1,﹣4);(3)①m=;②P′A3取得最小值时,m的值是,这个最小值是.
【解析】
(1)根据A(﹣1,3),C(3,﹣1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;
(3)①根据题意可以得到点P′的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P′落在直线BC上,从而可以求得m的值;
②根据题意可以表示出P′A3,从而可以求得当P′A3取得最小值时,m的值及这个最小值.
【详解】
解:(1)∵抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(﹣1,3),C(3,﹣1),∴,解得:,∴该抛物线的解析式为y=x3﹣3x﹣1.
∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴抛物线的顶点坐标为(1,﹣4);
(3)①由P(m,t)在抛物线上可得:t=m3﹣3m﹣1.
∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=3时,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:点B(1,3).
∵点B(1,3),点C(3,﹣1),设直线BC对应的函数解析式为:y=kx+d,,解得:,∴直线BC的直线解析式为y=x﹣1.
∵点P′落在直线BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;
②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.
∵二次函数的最小值是﹣4,∴﹣4≤t<3.
∵点P(m,t)在抛物线上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,过点P′作P′H⊥x轴,H为垂足,有H(﹣m,3).
又∵A(﹣1,3),则P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴当t=﹣时,P′A3有最小值,此时P′A3=,∴=m3﹣3m﹣1,解得:m=.
∵m<3,∴m=,即P′A3取得最小值时,m的值是,这个最小值是.
【点睛】
本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.
20、(1)证明见解析;(2);(3)证明见解析.
【解析】
(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可.
(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r.
(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证.
【详解】
解:(1)证明:∵OA=OB,
∴∠OAB=∠OBA.
∵OA⊥CD,
∴∠OAB+∠AGC=90°.
又∵∠FGB=∠FBG,∠FGB=∠AGC,
∴∠FBG+∠OBA=90°,即∠OBF=90°.
∴OB⊥FB.
∵AB是⊙O的弦,∴点B在⊙O上.∴BF是⊙O的切线.
(2)∵AC∥BF,
∴∠ACF=∠F.
∵CD=a,OA⊥CD,
∴CE=CD=a.
∵tan∠F=,
∴,
即.
解得.
连接OC,设圆的半径为r,则,
在Rt△OCE中,,
即,
解得.
(3)证明:连接BD,
∵∠DBG=∠ACF,∠ACF=∠F(已证),
∴∠DBG=∠F.
又∵∠FGB=∠FGB,
∴△BDG∽△FBG.
∴,即GB2=DG•GF.
∴GF2﹣GB2=GF2﹣DG•GF=GF(GF﹣DG)=GF•DF,即GF2﹣GB2=DF•GF.
21、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
【解析】
(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;
(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.
【详解】
解析:(1)设购买A种花木x棵,B种花木y棵,
根据题意,得:,解得:,
答:购买A种花木40棵,B种花木60棵;
(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,
根据题意,得:100﹣a≥a,解得:a≤50,
设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,
∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,
答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
考点:一元一次不等式的应用;二元一次方程组的应用.
22、
【解析】
【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.
【详解】原式=
=
=.
【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.
23、(1)见解析;(2)1
【解析】
(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.
【详解】
(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.
∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.
在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.
又∵OA=OC,∴四边形AECF是平行四边形.
又∵EF⊥AC,∴平行四边形AECF是菱形;
(2)设AF=x.
∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.
【点睛】
本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.
24、(1)i)证明见试题解析;ii);(2);(3).
【解析】
(1)i)由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;
ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,进一步可得到∠EBF=1°,从而有,解得;
(2)连接BF,同理可得:∠EBF=1°,由,得到,,故,从而,得到,代入解方程即可;
(3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
,,
故,
从而有.
【详解】
解:(1)i)∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;
ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;
(2)连接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;
(3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
,,
∴,
∴.
【点睛】
本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质.
25、-1.
【解析】
直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.
【详解】
原式=﹣1+1﹣3
=﹣1.
【点睛】
本题主要考查了实数运算,正确化简各数是解题的关键.
26、此车没有超过了该路段16m/s的限制速度.
【解析】
分析:根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.
详解:由题意得:∠DCA=60°,∠DCB=45°,
在Rt△CDB中,tan∠DCB=,
解得:DB=200,
在Rt△CDA中,tan∠DCA=,
解得:DA=200,
∴AB=DA﹣DB=200﹣200≈146米,
轿车速度,
答:此车没有超过了该路段16m/s的限制速度.
点睛:本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.
27、1
【解析】
根据实数的混合计算,先把各数化简再进行合并.
【详解】
原式=1+3-2-3+2
=1
【点睛】
此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.
2023-2024学年福建省厦门市思明区双十中学九年级(下)月考数学试卷(含解析): 这是一份2023-2024学年福建省厦门市思明区双十中学九年级(下)月考数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年福建省厦门市思明区双十中学七年级(上)期末数学试卷(含解析): 这是一份2023-2024学年福建省厦门市思明区双十中学七年级(上)期末数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年福建省厦门市思明区双十中学中考数学模拟试卷(含解析): 这是一份2023年福建省厦门市思明区双十中学中考数学模拟试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。