所属成套资源:2022-2023学年九年级数学上册 精讲精练(沪教版)
第08讲 锐角的三角比的意义- 2022-2023学年九年级数学上册 精讲精练(沪教版)
展开
这是一份第08讲 锐角的三角比的意义- 2022-2023学年九年级数学上册 精讲精练(沪教版),文件包含第8讲锐角的三角比的意义解析版-2022-2023学年九年级数学上册精讲精练沪教版docx、第8讲锐角的三角比的意义原卷版-2022-2023学年九年级数学上册精讲精练沪教版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
知识一、正切与余切
1.正切
a
c
A
B
C
b
直角三角形中一个锐角的对边与邻边的比叫做这个锐角的正切(tangent).锐角A的正切记作tan A.
.
2.余切
直角三角形中一个锐角的邻边与对边的比叫做这个锐角的余切(ctangent).锐角A的余切记作ct A.
.
题型探究
题型一、寻找对边与邻边
【例1】如图,在中,,,垂足为点Q.
在中,的对边是______,的邻边是______;
在中,的对边是______,的邻边是______.
在____中,的对边是MP;在____中,的邻边是NQ.
的邻边是______,的对边是______.
P
N
M
Q
题型二、求锐角的正切与余切
【例2】在中,,AC = 4,BC = 5,求tan A、ct A、tan B、ct B的值.
举一反三
1.如图,在中,,的对边是______,的邻边是______
的对边是______,的邻边是______.
A
B
C
2.如图,在中,,,垂足为点Q.
(1).
(2)______,______.(用正切或余切表示)
P
N
M
Q
3.(2021·贵州九年级三模)中,,,,那么的值等于( )
A.B.C.D.
4.(2020·上海市静安区实验中学九年级课时练习)在Rt△ABC中,∠C=90°,AC=3,BC=4,那么tanA=________.
知识二、正弦与余弦
a
c
A
B
C
b
1.正弦
直角三角形中一个锐角的对边与斜边的比叫做这个锐角的正弦(sine).锐角A的正弦记作sin A.
.
2.余弦
直角三角形中一个锐角的邻边与斜边的比叫做这个锐角的余弦(csine).锐角A的余弦记作cs A.
.
题型探究
题型一、正弦、余弦的定义
【例3】如图,在中,,,垂足为点Q.
.
______,______.(用正弦或余弦表示)
P
N
M
Q
题型二、求锐角的正弦与余弦
【例4】如图,在中,,AB = 17,BC = 8,求sin A,cs A的值.
【例5】如图,在直角坐标平面内有一点P(3,4).求OP与x轴正半轴的夹角的正切、正弦和余弦的值.
x
y
P
O
【例6】已知,在中,,BC = 9,sin A =.
求:(1)AB的长;(2)sin B的值.
举一反三
1.(2021·上海九年级专题练习)在⊿ABC中,∠B=90°,AB=5,BC=12,则______.
2.(2019·甘肃九年级期中)在Rt△ABC中,∠C=90°,BC=6,AB=10,sinA=_________________.
3.(2019·全国九年级课时练习)在中,,,,则______,______,______,______,______,______.
4.(2018·安徽九年级期末)如图,网格中的每一个正方形的边长都是1,△ABC的每一个顶点都在网格的交点处,则sinC=_____。
5.(上海九年级一模)如果在平面直角坐标系xy中,点P的坐标为(3,4),射线OP与X轴的正半轴所夹的角为α,那么α的余弦值等于_____.
知识三、三角比之间的联系
备注:如果角确定,那么这个锐角的三角比的确定的.
【例7】(上海普陀区·九年级期末)若为一锐角,且,则 .
【例8】如图,在中,,BDAC,若AB = 9,BC = 12,求sin A、、、ct C的值.
A
B
C
D
【例9】如图,在平行四边形ABCD中,AB = 10,为锐角,sin B =,,
求AD、AC的长.
课后作业
一、单选题
1.(2021·上海)在中,,那么等于( )
A.B.C.D.
2.(2020·上海市静安区实验中学九年级课时练习)在Rt△ABC中,已知a边及∠A,则斜边应为 ( )
A.asinAB.C.acsAD.
3.(2021·上海九年级专题练习)在中,,那么锐角的正弦等于( )
A.B.C.D..
4.(2020·上海市静安区实验中学九年级课时练习)如果⊿ABC的各边长都扩大为原来的3倍,那么锐角A的正弦、余弦値是( )
A.都扩大为原来的3倍B.都缩小为原来的
C.没有变化D.不能确定
5.(2020·西安市铁一中学九年级月考)在中,分别为所对的边则下列等式中不正确的是( )
A.B.C.D.
6.(2021·浙江九年级一模)在△ABC中,∠C=90°,,则( )
A.csA=B.sinB=C.tanA=D.tanB=
7.(2021·湖南九年级期末)Rt△ABC中,∠C=90°,若AB=4,csA=,则AC的长为( )
A.B.C.D.5
8.(2021·浙江九年级期末)中,,,,( )
A.B.2C.D.
9.(2020·甘肃临泽二中)如图,△ABC的顶点是正方形网格的格点,则sinA的值为( )
A.B.C.D.
10.(2020·上海市静安区实验中学九年级课时练习)⊿ABC中,∠C=90°,下列关系中正确的是( )
A.B.C.D.
11.(2020·上海市静安区实验中学九年级课时练习)在中,C=90°,tan A =3,tanB=________
12.(2020·江苏省淮阴中学开明分校九年级期中)在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinA=_____________
13.(2019·全国)若等腰三角形的两边长分别为和,则底角的正切值为______.
14.(2021·上海九年级专题练习)已知中,,,,那么的长是________.
15.(2020·上海市西南模范中学九年级月考)如图,中,,于,,,,____________.
16.(2021·上海九年级专题练习)已知一次函数的函数图像与轴交于点,且坐标平面内有一点为坐标原点,则_________________.
17.(2020·上海市西南模范中学九年级月考)α是锐角,若sinα=cs15°,则α=_____°.
18.(2020·上海市静安区实验中学九年级课时练习)已知, 其中为锐角,求、、的値.
19.(2019·全国九年级课时练习)如图,在中,,,垂足为,,.求的值.
20.(2018·上海松江区·九年级期中)如图,在△ABC中,AB=AC=10,sinC=,点D是BC上一点,且DC=AC.
(1)求BD的长;
(2)求tan∠BAD.
相关试卷
这是一份第01讲 相似形与比例线段- 2022-2023学年九年级数学上册 精讲精练(沪教版),文件包含第1讲相似形与比例线段解析版-2022-2023学年九年级数学上册精讲精练沪教版docx、第1讲相似形与比例线段原卷版-2022-2023学年九年级数学上册精讲精练沪教版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份第02讲 比例线段- 2022-2023学年九年级数学上册 精讲精练(沪教版),文件包含第2讲比例线段解析版-2022-2023学年九年级数学上册精讲精练沪教版docx、第2讲比例线段原卷版-2022-2023学年九年级数学上册精讲精练沪教版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份第15讲 二次函数的解析式与应用- 2022-2023学年九年级数学上册 精讲精练(沪教版),文件包含第15讲二次函数的解析式与应用解析版-2022-2023学年九年级数学上册精讲精练沪教版docx、第15讲二次函数的解析式与应用原卷版-2022-2023学年九年级数学上册精讲精练沪教版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。