所属成套资源:2022年中考数学基础题提分讲练专题(含答案)
2022年中考数学基础题提分讲练专题:10 图形变换(含答案)
展开
这是一份2022年中考数学基础题提分讲练专题:10 图形变换(含答案),共13页。
必考点1 平移
平面图形在它所在平面上的平行移动。 决定要素:平移的方向、平移的距离。
【典例1】下列四个图形中,可以由图通过平移得到的是( )
A.B.C.D.
【答案】D
【解析】
考查图像的平移,平移前后的图像的大小、形状、方向是不变的,故选D.
【点睛】
本题考查了图形的平移,牢固掌握平移的性质即可解题.
【举一反三】
1.在平面直角坐标系中,将点向下平移2个单位长度,得到的点的坐标为( )
A.B.C.D.
【答案】A
【解析】
解:将点向下平移2个单位长度,得到的点的坐标为,即,
故选:A.
【点睛】
本题考查了坐标与图形变化-平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
2.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )
A.(﹣1,1) B.(﹣1,﹣2) C.(﹣1,2) D.(1,2)
【答案】A
【解析】
已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.
考点:坐标与图形变化-平移.
3.如图,在平面直角坐标系中,将四边形向下平移,再向右平移得到四边形,已知,则点坐标为( )
A.B.C.D.
【答案】B
【解析】
图形向下平移,纵坐标发生变化,图形向右平移,横坐标发生变化. A(-3,5)到A1(3,3)得向右平移3-(-3)=6个单位,向下平移5-3=2个单位.所以B(-4,3)平移后B1(2,1).
故选B.
【点睛】
此题考查图形的平移.,掌握平移的性质是解题关键
必考点2 轴对称
一个(两个)平面图形沿某条直线对折能够完全重合。
【典例2】下列倡导节约的图案中,是轴对称图形的是( )
A.B.C.D.
【答案】C
【解析】
解:A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项正确;
D、不是轴对称图形,故此选项错误.
故选:C.
【点睛】
此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
【举一反三】
下面四个图形中,属于轴对称图形的是( )
A.B.C.D.
【答案】C
【解析】
根据轴对称图形的定义可知:选项A、B、D所给的图形均不是轴对称图形,只有选项C的图形是轴对称图形.
故选C.
【点睛】
此题考查轴对称图形的判断,解题关键在于握判断一个图形是否为轴对称图形的方法.
11.在下列图形中是轴对称图形的是( )
A.B.
C.D.
【答案】B
【解析】
A.不是轴对称图形,故本选项不符合题意,
B.是轴对称图形,故本选项符合题意,
C.不是轴对称图形,故本选项不符合题意,
D.是不轴对称图形,故本选项不符合题意.
故选B.
【点睛】
本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
12.改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )
A.B.C.D.
【答案】B
【解析】
A、不是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项正确;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选:B.
【点睛】
本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
必考点3 中心对称
一个图形旋转180°能与自身重合
【典例3】下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
A.B.C.D.
【答案】B
【解析】
由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
故选B.
【举一反三】
1.下列图形中,一定既是轴对称图形又是中心对称图形的是( ).
A.等边三角形B.直角三角形C.平行四边形D.正方形
【答案】D
【解析】
解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;
B、直角三角形不是轴对称图形,也不是中心对称图形,故本选项错误;
C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
D、正方形既是轴对称图形,又是中心对称图形,故此选项正确.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
2.下列图案中,是中心对称图形的是( )
A.B. C. D.
【答案】D
【解析】
A、不是中心对称图形,故不符合题意;
B、不是中心对称图形,故不符合题意;
C、不是中心对称图形,故不符合题意;
D、是中心对称图形,故符合题意,
故选D.
【点睛】
本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.
3.在下列图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
【答案】D
【解析】
分析:根据轴对称图形与中心对称图形的概念求解.
详解:A、不是轴对称图形,是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,也不是中心对称图形,故此选项错误;
D、是轴对称图形,也是中心对称图形,故此选项正确.
故选:D.
点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
1.如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段 AB ,则点 B 的对应点 B′的坐标是( )
A.(-4 , 1)B.( -1, 2)C.(4 ,- 1)D.(1 ,- 2)
【答案】D
【解析】
将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,-2),
故选D.
【点睛】
本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.
2.如图,菱形的对角线,交于点,,将沿点到点的方向平移,得到,当点与点重合时,点与点之间的距离为( )
A.B.C.D.
【答案】C
【解析】
由菱形的性质得
为直角三角形
故选C
【点睛】
本题主要考查直角三角形勾股定理以及菱形的性质,本题关键在于利用菱形性质求出直角三角形的两条边
3.在6×6方格中,将图①中的图形N平移后位置如图②所示,则图形N的平移方法中,正确的是
图① 图②
A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格
【答案】D
【解析】
由图可知,图①中的图形N向下移动2格后得到图②.故选D.
4.下列图形具有两条对称轴的是( )
A.等边三角形B.平行四边形C.矩形D.正方形
【答案】C
【解析】
A、等边三角形有3条对称轴,故本选项错误;
B、平行四边形无对称轴,故本选项错误;
C、矩形有2条对称轴,故本选项正确;
D、正方形有4条对称轴,故本选项错误,
故选C.
【点睛】
本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.
5.下列图案中,是中心对称图形但不是轴对称图形的是 ( )
A.B.C.D.
【答案】C
【解析】
A、不是中心对称图形,是轴对称图形,故不符合题意;
B、是轴对称图形,也是中心对称图形,故不符合题意;
C、是中心对称图形,不是轴对称图形,故符合题意;
D、不是中心对称图形,也不是轴对称图形,故不符合题意,
故选C.
【点睛】
本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
6.下列图形既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
【答案】C
【解析】
A、不是轴对称图形,是中心对称图形,故此选项错误;
B、不是轴对称图形,也不是中心对称图形,故此选项错误;
C、是轴对称图形,也是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故此选项错误;
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7.如图,在四边形中,.若将沿折叠,点与边的中点恰好重合,则四边形的周长为________.
【答案】20
【解析】
解:∵BD⊥AD,点E是AB的中点,
∴DE=BE=AB=5,
由折叠可得,CB=BE,CD=ED,
∴四边形BCDE的周长为5×4=20,
故答案为:20.
【点睛】
本题主要考查了直角三角形的性质及折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
8.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),的度数是________.
【答案】45°
【解析】
在折叠过程中角一直是轴对称的折叠,
故答案为:45°
【点睛】
考核知识点:轴对称.理解折叠的本质是关键.
9.在平面直角坐标系中,点关于直线的对称点的坐标是_____.
【答案】
【解析】
∵点,
∴点到直线的距离为,∴点关于直线的对称点到直线的距离为3,
∴点的横坐标为,
∴对称点的坐标为.
故答案为:.
【点睛】
本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线的距离,从而得到横坐标是解题的关键,作出图形更形象直观.
10.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1) 请画出△ABC向左平移5个单位长度后得到的△ABC;
(2) 请画出△ABC关于原点对称的△ABC;
(3) 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
【答案】(1)图形见解析;
(2)图形见解析;
(3)图形见解析,点P的坐标为:(2,0)
【解析】
(1)△A1B1C1如图所示;
(2)△A2B2C2如图所示;
(3)△PAB如图所示,点P的坐标为:(2,0)
11.已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.
(1)画出关于原点成中心对称的,并写出点的坐标;
(2)画出将绕点按顺时针旋转所得的.
【答案】(1)如图所示,即为所求,见解析,点的坐标为;(2)如图所示,即为所求.见解析.
【解析】
解:(1)如图所示,即为所求,其中点的坐标为.
(2)如图所示,即为所求.
【点睛】
此题主要考查了图形的旋转变换,正确得出对应点位置是解题关键.
相关试卷
这是一份2022年中考数学基础题提分讲练专题:26 应用能力提升(含答案),共19页。试卷主要包含了选择题,羊二,直金十两;牛二,解答题等内容,欢迎下载使用。
这是一份2022年中考数学基础题提分讲练专题:25 推理能力提升(含答案),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年中考数学基础题提分讲练专题:14 统计初步(含答案),共15页。试卷主要包含了总体和样本,反映数据集中趋势的特征数,反映数据波动大小的特征数等内容,欢迎下载使用。