![高中数学选择性必修三 7.4二项分布与超几何分布课件01](http://m.enxinlong.com/img-preview/3/3/13461868/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学选择性必修三 7.4二项分布与超几何分布课件02](http://m.enxinlong.com/img-preview/3/3/13461868/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学选择性必修三 7.4二项分布与超几何分布课件03](http://m.enxinlong.com/img-preview/3/3/13461868/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学选择性必修三 7.4二项分布与超几何分布课件04](http://m.enxinlong.com/img-preview/3/3/13461868/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学选择性必修三 7.4二项分布与超几何分布课件05](http://m.enxinlong.com/img-preview/3/3/13461868/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学选择性必修三 7.4二项分布与超几何分布课件06](http://m.enxinlong.com/img-preview/3/3/13461868/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学选择性必修三 7.4二项分布与超几何分布课件07](http://m.enxinlong.com/img-preview/3/3/13461868/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学选择性必修三 7.4二项分布与超几何分布课件08](http://m.enxinlong.com/img-preview/3/3/13461868/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
数学7.4 二项分布与超几何分布集体备课ppt课件
展开孔子是我国古代著名的教育家、思想家,留下了许多至理名言,其中“三人行,必有我师焉”是我们大家都熟知的一句话.孔子的学问很高,但他也很谦虚,自称与任意两人(加上自己共三人)同行,则他们中间一定有一个人可以做自己的老师.这是孔子自谦的一句话,那么实际情况怎么样呢?我们不妨从概率的角度来看一下.
一、二项分布1.伯努利试验:我们把只包含两个可能结果的试验叫做伯努利试验.2.n重伯努利试验:我们将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.n重伯努利试验具有如下共同特征:(1)同一个伯努利试验重复做n次;(2)各次试验的结果相互独立.
3.二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0微练习同时抛掷两枚质地均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则D(ξ)=( )
二、超几何分布1.定义:一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)= ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.
微练习设10件产品中有3件次品、7件正品,现从中抽取5件,求抽得次品件数ξ的分布列.
解:由题意知ξ服从参数N=10,M=3,n=5的超几何分布.ξ的可能取值为0,1,2,3,则
故随机变量ξ的分布列为
n重伯努利试验概率的求法例1甲、乙两人各射击一次,击中目标的概率分别是 ,假设每次射击是否击中目标,相互之间没有影响.(结果需用分数作答)(1)求甲射击3次,至少有1次未击中目标的概率;(2)若两人各射击2次,求甲恰好击中目标2次且乙恰好击中目标1次的概率.
延伸探究 1.在本例(2)的条件下,求甲、乙均击中目标1次的概率.
2.在本例(2)的条件下,求甲未击中,乙击中2次的概率.
反思感悟 n重伯努利试验概率求法的三个步骤(1)判断:依据n重伯努利试验的特征,判断所给试验是否为n重伯努利试验.(2)分拆:判断所求事件是否需要分拆.(3)计算:就每个事件依据n重伯努利试验的概率公式求解,最后利用互斥事件概率加法公式计算.
变式训练1某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位):(1)“5次预报中恰有2次准确”的概率;(2)“5次预报中至少有2次准确”的概率.
解:(1)5次预报相当于5次伯努利试验.“恰有2次准确”的概率为
因此5次预报中恰有2次准确的概率约为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”.
所以所求概率为1-P=1-0.006 72≈0.99.所以“5次预报中至少有2次准确”的概率约为0.99.
两点分布与二项分布例2某运动员投篮命中率为p=0.6.(1)求投篮1次时命中次数X的均值;(2)求重复5次投篮时,命中次数Y的均值.
解:(1)投篮1次,命中次数X的分布列如下表.
则E(X)=0.6.(2)由题意,重复5次投篮,命中的次数Y服从二项分布,即Y~B(5,0.6),则E(Y)=5×0.6=3.
反思感悟 1.常见的两种分布的均值设p为一次试验中成功的概率,则(1)两点分布E(X)=p;(2)二项分布E(X)=np.熟练应用上述公式可大大减少运算量,提高解题速度.2.两点分布与二项分布辨析(1)相同点:一次试验中要么发生,要么不发生.(2)不同点:①随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值为0,1,2,…,n.②试验次数不同,两点分布一般只有一次试验,二项分布则进行n次试验.
变式训练2某人投篮命中率为0.8,重复5次投篮,命中次数为X,命中一次得3分,求5次投篮得分的均值.解:设投篮得分为变量η,则η=3X.依题意,X~B(5,0.8),则E(X)=5×0.8=4,故E(η)=3E(X)=12.
二项分布的应用例3高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为 ,该研究性学习小组又分成两个小组进行验证性试验.(1)第一小组做了5次这种植物种子的发芽试验(每次均种下一粒种子),求他们的试验中至少有3次发芽成功的概率.(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止试验,否则将继续进行下次试验,直到种子发芽成功为止,但试验的次数最多不超过5次.求第二小组所做种子发芽试验的次数ξ的分布列.
解:(1)至少有3次发芽成功,即有3次、4次、5次发芽成功.设5次试验中种子发芽成功的次数为随机变量X,
反思感悟 1.二项分布的简单应用是求n次独立重复试验中事件A恰好发生k次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n,p→写出二项分布的分布列→将k值代入求解概率.2.利用二项分布求解“至少”“至多”问题的概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.
变式训练3在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X,求X不小于4的概率.
超几何分布例4一个袋中装有6个形状、大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中一次随机抽取3个球.(1)求取出的3个球的颜色都不相同的概率;(2)记取得1号球的个数为随机变量X,求随机变量X的分布列.
延伸探究 1.在本例条件下,若记取到白球的个数为随机变量η,求随机变量η的分布列.
2.将本例的条件“一次随机抽取3个球”改为“有放回地抽取3次,每次抽取1个球”,其他条件不变,结果又如何?
反思感悟 超几何分布的求解步骤(1)辨模型:结合实际情境分析所求概率分布问题是否能转化为超几何分布模型.(2)算概率:可以直接借助公式P(X=k)= 求解,也可以利用排列、组合及概率的知识求解,需注意借助公式求解时应理解参数M,N,n,k的含义.(3)列分布列:把求得的概率值通过表格表示出来.
相互独立事件和二项分布的综合应用典例某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列.
解:(1)任选1名下岗人员,记“该人参加过财会培训”为事件A,“该人参加过计算机培训”为事件B,由题设知,事件A与B相互独立,且P(A)=0.6,P(B)=0.75.所以该下岗人员没有参加过培训的概率是
故该人参加过培训的概率为1-0.1=0.9.(2)因为每个人的选择是相互独立的,所以3人中参加过培训的人数
方法点睛 第1步,利用事件的相互独立性分别找出参加两种培训对应的概率;第2步,利用对立事件求参加过培训的概率;第3步,判断参加培训人数服从二项分布;第4步,利用二项分布求解分布列.
跟踪训练袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.有放回抽样时,求取到黑球的个数X的分布列.
1.(2020湖南长沙高二月考)一工厂生产100个产品中有90个一等品、10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为( )
高中数学人教A版 (2019)选择性必修 第三册第七章 随机变量及其分布7.4 二项分布与超几何分布备课ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第三册第七章 随机变量及其分布7.4 二项分布与超几何分布备课ppt课件,共26页。
高中数学人教A版 (2019)选择性必修 第三册第七章 随机变量及其分布7.4 二项分布与超几何分布说课课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第三册第七章 随机变量及其分布7.4 二项分布与超几何分布说课课件ppt,共49页。PPT课件主要包含了知识点1知识点2,类型1类型2类型3等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布教学演示课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布教学演示课件ppt,共52页。PPT课件主要包含了知识点1知识点2,类型1类型2类型3等内容,欢迎下载使用。