所属成套资源:2022年新高考数学二轮提升数列专题(解析版+原卷版)
2022年新高考数学二轮提升数列专题第13讲《数列性质:单调性》(2份打包,解析版+原卷版)
展开
这是一份2022年新高考数学二轮提升数列专题第13讲《数列性质:单调性》(2份打包,解析版+原卷版),文件包含2022年新高考数学二轮提升数列专题第13讲《数列性质单调性》解析版doc、2022年新高考数学二轮提升数列专题第13讲《数列性质单调性》原卷版doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
第13讲 数列性质:单调性 参考答案与试题解析一.填空题(共6小题)1.(2021•南通模拟)已知为递减数列,且对于任意正整数,恒成立,恒成立,则的取值范围是 .【解答】解:恒成立又由恒成立即又由故答案为:2.(2021秋•秀屿区校级月考)已知数列满足:,是与无关的常数且,若数列是单调递减数列,则的取值范围为 .【解答】解:是与无关的常数且,,数列是等差数列,首项为,公差为,,.数列是单调递减数列,对于都成立.对于都成立.令,则是关于的单调递增数列,..的取值范围为.故答案为.3.(2021•衡水模拟)若数列满足,则称数列为“差递减”数列,若数列是“差递减”数列,且其通项与其前项和满足,则实数的取值范围是 .【解答】解:,时,,解得.时,,化为.同理可得:,,.,,,,,解得:.则实数的取值范围是.故答案为:.4.(2021•东湖区校级模拟)若数列满足,且,若使不等式成立的有且只有三项,则的取值范围为 .【解答】解:当时,,于是有:,所以,显然也适合,因此数列的通项公式为:.当为奇数时,,此时数列的奇数项数列是单调递增函数;当为偶数时,,此时数列的偶数项数列是单调递增函数,要想使不等式成立的有且只有三项,只需有:.故答案为:.5.(2021•辽宁模拟)已知数列满足:,,若,,且数列是单调递增数列,则实数的取值范围是 .【解答】解:因为,即,所以数列是首项为,公比为2的等比数列,则有,即,所以,则,,因为数列是单调递增数列,所以对恒成立,即对恒成立,所以,又,即,解得,所以实数的取值范围是.故答案为:.6.(2021秋•渝中区校级月考)设数列满足.(1)若,则 ;(2)若数列是正项单调递增数列,则的取值范围是 .【解答】解:(1)若,则,故数列为常数列,故.(2)解法一:若数列是正项单调递增数列,则(舍去)或,当时,则,故若,则数列是单调递增数列,综上所述,的取值范围是.解法二:若数列是正项单调递增数列,则对于任意,,且,又此时,故或(舍去),综上所述,的取值范围是.二.解答题(共7小题)7.(2021秋•洛阳期中)已知数列的前项和为,且,.(1)证明:数列是等差数列;(2)若对任意整数恒成立,求实数的取值范围.【解答】解:(1)证明:,可得,即有,则数列是1为首项,4为公差的等差数列;(2)由(1)可得,即有,由可得,即,令,则,即有数列为递增数列,当时,取得最小值,且为,可得,解得或.即实数的取值范围为,.8.(2021•内江四模)已知函数的图象在处的切线方程为.(1)求,的值;(2)若,求函数的单调区间;(3)若正项数列满足,,证明:数列是递减数列.【解答】解:(1)由题意得,,则 ,解得,;(2)由(1)可得,由题意得,,①当时,令,解得或,所以在和上单调递增;令,解得,所以在上单调递减;②当时,,则在上单调递增;③当时,令,解得或,所以在和上单调递增;令,解得,所以在上单调递减;综上:当时,的单调递增区间和,单调递减区间是;当时,的单调递增区间是;当时,的单调递增区间和,单调递减区间是.(3)证明:正项数列满足,,,数列是递减数列,等价为,即为,即为即,令,是上的增函数,,即,故,是递减数列.9.(2021春•安徽期末)已知数列中,,且.(1)证明:数列是等比数列;(2)若数列的前项和为①当时,求;②若单调递增,求的取值范围.【解答】解:(1)证明:设,则,,,(1分),(3分)数列是公比为2的等比数列,故数列是等比数列,(4分),,(6分)(2)由(1)得,,,(7分),(8分),,(10分)①当时,;(11分)②单调递增,对且恒成立,(12分)即,设,则,在且单调递减,(14分),,即,故的取值范围为.(16分)10.(2021春•南昌期末)已知首项为正的数列中,相邻两项不为相反数,且前项和(1)求证:数列为等差数列;(2)设数列的前项和为,对一切正整数都有成立,求的最大值.【解答】(本小题12分)解:(1)证明:,,,或.又相邻两项不为相反数,,数列为公差为2的等差数列.(2)由或,数列的首项为正,,由(1)得,数列在,上是递增数列.又当时,要使得对于一切正整数都有成立,只要,所以的最大值为.11.(2021•天津一模)已知数列的前项和为,且对一切正整数都有.(Ⅰ)求证:;(Ⅱ)求数列的通项公式;(Ⅲ)是否存在实数,使不等式对一切正整数都成立?若存在,求出的取值范围;若不存在,请说明理由.【解答】解:,,,即.在中,令,得,代入得.,,两式相减,得:,数列的偶数项,,,,,依次构成一个等差数列,且公差为,当为偶数时,,当为奇数时,为偶数,由上式及知:,数列的通项公式是.,等价于,令,则由知,.,即的值随的增大而减小,时,的最大值为,若存在实数,符合题意,则必有:,即,它等价于,解得,或,因此,存在实数,符合题意,其取值范围为.12.已知数列的前项和为,且对一切正整数都有.(1)证明:;(2)求数列的通项公式;(3)设,求证:对一切都成立.【解答】解:(1).①.②②①得:;(2);;又(3)对一切都成立.13.(2017秋•海安市校级月考)首项为正数的数列满足.(1)证明:若为奇数,则对,都是奇数;(2)若对,都有,求的取值范围.【解答】(1)证明:利用数学归纳法证明:已知是奇数,时成立.假设是奇数,其中为正整数,则由递推关系得是奇数.即时也成立.根据数学归纳法,对任何,都是奇数.(2)解:由,得,于是或.,因为,,所以所有的均大于0,因此与同号.因此,对一切都有的充要条件是或.
相关试卷
这是一份2022年新高考数学二轮提升数列专题第27讲《数列与概率的交汇问题》(2份打包,解析版+原卷版),文件包含2022年新高考数学二轮提升数列专题第27讲《数列与概率的交汇问题》解析版doc、2022年新高考数学二轮提升数列专题第27讲《数列与概率的交汇问题》原卷版doc等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。
这是一份2022年新高考数学二轮提升数列专题第26讲《数列与导数的交汇问题》(2份打包,解析版+原卷版),文件包含2022年新高考数学二轮提升数列专题第26讲《数列与导数的交汇问题》解析版doc、2022年新高考数学二轮提升数列专题第26讲《数列与导数的交汇问题》原卷版doc等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份2022年新高考数学二轮提升数列专题第25讲《数列与函数的交汇问题》(2份打包,解析版+原卷版),文件包含2022年新高考数学二轮提升数列专题第25讲《数列与函数的交汇问题》解析版doc、2022年新高考数学二轮提升数列专题第25讲《数列与函数的交汇问题》原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。