![湖北省恩施州三年(2020-2022)中考数学真题分类汇编-03解答题第1页](http://m.enxinlong.com/img-preview/2/3/13352523/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省恩施州三年(2020-2022)中考数学真题分类汇编-03解答题第2页](http://m.enxinlong.com/img-preview/2/3/13352523/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省恩施州三年(2020-2022)中考数学真题分类汇编-03解答题第3页](http://m.enxinlong.com/img-preview/2/3/13352523/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
湖北省恩施州三年(2020-2022)中考数学真题分类汇编-03解答题
展开
这是一份湖北省恩施州三年(2020-2022)中考数学真题分类汇编-03解答题,共43页。试卷主要包含了先化简,再求值,÷,其中m=,的图象经过点D,的一个交点为C,且BC=AC等内容,欢迎下载使用。
湖北省恩施州三年(2020-2022)中考数学真题分类汇编-03解答题
一.分式的化简求值(共3小题)
1.(2022•恩施州)先化简,再求值:÷﹣1,其中x=.
2.(2021•恩施州)先化简,再求值:1﹣÷,其中a=﹣2.
3.(2020•恩施州)先化简,再求值:(﹣)÷,其中m=.
二.一次函数的应用(共3小题)
4.(2022•恩施州)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.
(1)租用甲、乙两种客车每辆各多少元?
(2)若学校计划租用8辆客车,怎样租车可使总费用最少?
5.(2021•恩施州)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.
(1)求每千克花生、茶叶的售价;
(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克,甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?
6.(2020•恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量与用720元购买B品牌足球的数量相等.
(1)求A、B两种品牌足球的单价;
(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?
三.反比例函数与一次函数的交点问题(共3小题)
7.(2022•恩施州)如图,在平面直角坐标系中,O为坐标原点,已知∠ACB=90°,A(0,2),C(6,2).D为等腰直角三角形ABC的边BC上一点,且S△ABC=3S△ADC.反比例函数y1=(k≠0)的图象经过点D.
(1)求反比例函数的解析式.
(2)若AB所在直线解析式为y2=ax+b(a≠0),当y1>y2时,求x的取值范围.
8.(2021•恩施州)如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,坐标原点是BC的中点,∠ABC=30°,BC=4,双曲线y=经过点A.
(1)求k;
(2)直线AC与双曲线y=﹣在第四象限交于点D,求△ABD的面积.
9.(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.
(1)求点A的坐标;
(2)当S△AOC=3时,求a和k的值.
四.二次函数综合题(共3小题)
10.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y轴交于点P(0,4).
(1)直接写出抛物线的解析式.
(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.
(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.
(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.
11.(2021•恩施州)如图,在平面直角坐标系中,四边形ABCD为正方形,点A,B在x轴上,抛物线y=x2+bx+c经过点B,D(﹣4,5)两点,且与直线DC交于另一点E.
(1)求抛物线的解析式;
(2)F为抛物线对称轴上一点,Q为平面直角坐标系中的一点,是否存在以点Q,F,E,B为顶点的四边形是以BE为边的菱形.若存在,请求出点F的坐标;若不存在,请说明理由;
(3)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为M,连接ME,BP,探究EM+MP+PB是否存在最小值.若存在,请求出这个最小值及点M的坐标;若不存在,请说明理由.
12.(2020•恩施州)如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.
(1)求抛物线的解析式;
(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.
(3)△MPC在(2)的旋转变换下,若PC=(如图2).
①求证:EA=ED.
②当点E在(1)所求的抛物线上时,求线段CM的长.
五.菱形的判定(共1小题)
13.(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.
六.矩形的性质(共1小题)
14.(2021•恩施州)如图,矩形ABCD的对角线AC,BD交于点O,且DE∥AC,AE∥BD,连接OE.求证:OE⊥AD.
七.正方形的性质(共1小题)
15.(2022•恩施州)如图,已知四边形ABCD是正方形,G为线段AD上任意一点,CE⊥BG于点E,DF⊥CE于点F.求证:DF=BE+EF.
八.切线的性质(共1小题)
16.(2022•恩施州)如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.
(1)求证:∠ADE=∠PAE.
(2)若∠ADE=30°,求证:AE=PE.
(3)若PE=4,CD=6,求CE的长.
九.切线的判定与性质(共1小题)
17.(2021•恩施州)如图,在Rt△AOB中,∠AOB=90°,⊙O与AB相交于点C,与AO相交于点E,连接CE,已知∠AOC=2∠ACE.
(1)求证:AB为⊙O的切线;
(2)若AO=20,BO=15,求CE的长.
一十.圆的综合题(共1小题)
18.(2020•恩施州)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.
(1)求证:CE是⊙O的切线;
(2)求证:BE=EF;
(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.
一十一.解直角三角形的应用-仰角俯角问题(共1小题)
19.(2021•恩施州)乡村振兴使人民有更舒适的居住条件,更优美的生活环境,如图是怡佳新村中的两栋居民楼,小明在甲居民楼的楼顶D处观测乙居民楼楼底B处的俯角是30°,观测乙居民楼楼顶C处的仰角为15°,已知甲居民楼的高为10m,求乙居民楼的高.(参考数据:≈1.414,≈1.732,结果精确到0.1m)
一十二.解直角三角形的应用-方向角问题(共2小题)
20.(2022•恩施州)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸,碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A处测得古亭B位于北偏东60°,他们向南走50m到达D点,测得古亭B位于北偏东45°.求古亭与古柳之间的距离AB的长(参考数据:≈1.41,≈1.73,结果精确到1m).
21.(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).
一十三.条形统计图(共1小题)
22.(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:
(1)本次共调查了 名学生;
(2)补全条形统计图;
(3)D类所对应扇形的圆心角的大小为 ;
(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有 名.
一十四.方差(共1小题)
23.(2021•恩施州)九(1)班准备从甲、乙两名男生中选派一名参加学校组织的一分钟跳绳比赛,在相同的条件下,分别对两名男生进行了八次一分钟跳绳测试.现将测试结果绘制成如下不完整的统计图表,请根据统计图表中的信息解答下列问题:
平均数
中位数
众数
方差
甲
175
a
b
93.75
乙
175
175
180,175,170
c
(1)求a、b的值;
(2)若九(1)班选一位成绩稳定的选手参赛,你认为应选谁,请说明理由;
(3)根据以上的数据分析,请你运用所学统计知识,任选两个角度评价甲乙两名男生一分钟跳绳成绩谁优.
一十五.列表法与树状图法(共1小题)
24.(2022•恩施州)2022年4月29日,湖北日报联合夏风教室发起“劳动最光荣,加油好少年”主题活动.某校学生积极参与本次主题活动,为了解该校学生参与本次主题活动的情况,随机抽取该校部分学生进行调查.根据调查结果绘制如下不完整的统计图(如图).请结合图中信息解答下列问题:
(1)本次共调查了 名学生,并补全条形统计图.
(2)若该校共有1200名学生参加本次主题活动,则本次活动中该校“洗衣服”的学生约有多少名?
(3)现从参与本次主题活动的甲、乙、丙、丁4名学生中,随机抽取2名学生谈一谈劳动感受.请用列表或画树状图的方法,求甲、乙两人同时被抽中的概率.
参考答案与试题解析
一.分式的化简求值(共3小题)
1.(2022•恩施州)先化简,再求值:÷﹣1,其中x=.
【解答】解:÷﹣1
=•﹣1
=﹣1
=
=,
当x=时,原式==.
2.(2021•恩施州)先化简,再求值:1﹣÷,其中a=﹣2.
【解答】解:1﹣÷
=1﹣
=1﹣
=
=﹣,
当a=﹣2时,原式=﹣=﹣.
3.(2020•恩施州)先化简,再求值:(﹣)÷,其中m=.
【解答】解:
=
=
=
=;
当时,
原式=.
二.一次函数的应用(共3小题)
4.(2022•恩施州)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.
(1)租用甲、乙两种客车每辆各多少元?
(2)若学校计划租用8辆客车,怎样租车可使总费用最少?
【解答】解:(1)设租用甲种客车每辆x元,租用乙种客车每辆y元,
根据题意可得,,
解得.
∴租用甲种客车每辆200元,租用乙种客车每辆300元.
(2)设租用甲型客车m辆,则租用乙型客车(8﹣m)辆,租车总费用为w元,
根据题意可知,w=200m+300(8﹣m)=﹣100m+2400,
∵15m+25(8﹣m)≥180,
∴0<m≤2,
∵﹣100<0,
∴w随m的增大而减小,
∴当m=2时,w的最小值为﹣100×2+2400=2200.
∴当租用甲型客车2辆,租用乙型客车6辆,租车总费用最少为2200元.
5.(2021•恩施州)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.
(1)求每千克花生、茶叶的售价;
(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克,甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?
【解答】解:(1)设每千克花生x元,每千克茶叶(40+x)元,
根据题意得:50x=10(40+x),
解得:x=10,
40+x=40+10=50(元),
答:每千克花生10元,每千克茶叶50元;
(2)设花生销售m千克,茶叶销售(60﹣m)千克获利最大,利润w元,
由题意得:,
解得:30≤m≤40,
w=(10﹣6)m+(50﹣36)(60﹣m)=4m+840﹣14m=﹣10m+840,
∵﹣10<0,
∴w随m的增大而减小,
∴当m=30时,利润最大,
此时花生销售30千克,茶叶销售60﹣30=30千克,
w最大=﹣10×30+840=540(元),
∴当花生销售30千克,茶叶销售30千克时利润最大,最大利润为540元.
6.(2020•恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量与用720元购买B品牌足球的数量相等.
(1)求A、B两种品牌足球的单价;
(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?
【解答】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x﹣20)元,
根据题意,得,
解得:x=100,
经检验x=100是原方程的解,
x﹣20=80,
答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;
(2)设购买m个A品牌足球,则购买(90﹣m)个B品牌足球,
则W=100m+80(90﹣m)=20m+7200,
∵A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,
∴,
解不等式组得:60≤m≤65,
所以,m的值为:60,61,62,63,64,65,
即该队共有6种购买方案,
当m=60时,W最小,
m=60时,W=20×60+7200=8400(元),
答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.
三.反比例函数与一次函数的交点问题(共3小题)
7.(2022•恩施州)如图,在平面直角坐标系中,O为坐标原点,已知∠ACB=90°,A(0,2),C(6,2).D为等腰直角三角形ABC的边BC上一点,且S△ABC=3S△ADC.反比例函数y1=(k≠0)的图象经过点D.
(1)求反比例函数的解析式.
(2)若AB所在直线解析式为y2=ax+b(a≠0),当y1>y2时,求x的取值范围.
【解答】解:(1)∵A(0,2),C(6,2),
∴AC=6,
∵△ABC是∠C为直角的等腰直角三角形,
∴BC=AC=6,
∵D为等腰直角三角形ABC的边BC上一点,且S△ABC=3S△ADC.
∴CD=2,
∴D(6,4),
∵反比例函数y1=(k≠0)的图象经过点D,
∴k=6×4=24,
∴反比例函数的解析式为y=;
(2)∵A(0,2),B(6,8),
∴把A、B的坐标代入y2=ax+b得,
解得,
∴y2=x+2,
解得或,
∴两函数的交点为(﹣6,﹣4),(4,6)
∴当y1>y2时,x的取值范围是x<﹣6或0<x<4.
8.(2021•恩施州)如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,坐标原点是BC的中点,∠ABC=30°,BC=4,双曲线y=经过点A.
(1)求k;
(2)直线AC与双曲线y=﹣在第四象限交于点D,求△ABD的面积.
【解答】解:(1)如图,作AH⊥BC于H,
Rt△ABC的斜边BC在x轴上,坐标原点是BC的中点,∠ABC=30°,BC=4,
∴OC=BC=2,AC=BC×sin30°=2,
∵∠HAC+∠ACO=90°,∠ABC+∠ACO=90°,
∴∠HAC=∠ABC=30°,
∴CH=AC×sin30°=1,AH=AC×cos30°=,
∴OH=OC﹣CH=2﹣1=1,
∴A(1,),
∵双曲线y=经过点A,
∴=,
即k=;
(2)设直线AC的解析式为y=kx+b,
∵A(1,),C(2,0),
∴,
解得,
∴直线AC的解析式为y=﹣x+2,
∵直线AC与双曲线y=﹣在第四象限交于点D,
∴,
解得或,
∵D在第四象限,
∴D(3,﹣),
∴S△ABD=S△ABC+S△BCD=BC•AH+BC•(﹣yD)==4.
9.(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.
(1)求点A的坐标;
(2)当S△AOC=3时,求a和k的值.
【解答】解:(1)由题意得:令y=ax﹣3a(a≠0)中y=0,
即ax﹣3a=0,解得x=3,
∴点A的坐标为(3,0),
故答案为(3,0).
(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:
显然,CM∥OA,
∴∠BCM=∠BAO,且∠ABO=∠CBO,
∴△BCM∽△BAO,
∴,即:,
∴CM=1,
又
即:,
∴CN=2,
∴C点的坐标为(1,2),
故反比例函数的k=1×2=2,
再将点C(1,2)代入一次函数y=ax﹣3a(a≠0)中,
即2=a﹣3a,解得a=﹣1,
∴当S△AOC=3时,a=﹣1,k=2.
四.二次函数综合题(共3小题)
10.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y轴交于点P(0,4).
(1)直接写出抛物线的解析式.
(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.
(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.
(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.
【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),
∴c=4,
∴抛物线的解析式为y=﹣x2+4;
(2)△BCQ是直角三角形.理由如下:
将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,
∴平移后的抛物线顶点为Q(﹣1,4),
令x=0,得y=﹣1+4=3,
∴C(0,3),
令y=0,得﹣(x+1)2+4=0,
解得:x1=1,x2=﹣3,
∴B(﹣3,0),A(1,0),
如图1,连接BQ,CQ,PQ,
∵P(0,4),Q(﹣1,4),
∴PQ⊥y轴,PQ=1,
∵CP=4﹣3=1,
∴PQ=CP,∠CPQ=90°,
∴△CPQ是等腰直角三角形,
∴∠PCQ=45°,
∵OB=OC=3,∠BOC=90°,
∴△BOC是等腰直角三角形,
∴∠BCO=45°,
∴∠BCQ=180°﹣45°﹣45°=90°,
∴△BCQ是直角三角形.
(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.
∵△ABC是锐角三角形,∠ABC=45°,
∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,
即点T在y轴的右侧,
设T(x,0),且x>0,则BT=x+3,
∵B(﹣3,0),A(1,0),C(0,3),
∴∠ABC=45°,AB=4,BC=3,
设直线BC的解析式为y=kx+b,
则,
解得:,
∴直线BC的解析式为y=x+3,
由,
解得:,,
∴M(﹣,),N(,),
∴BN=×=,
①当△NBT∽△CBA时,则=,
∴=,
解得:x=,
∴T(,0);
②当△NBT∽△ABC时,则=,
∴=,
解得:x=,
∴T(,0);
综上所述,点T的坐标T(,0)或(,0).
(4)抛物线y=﹣x2+4的顶点为P(0,4),
∵直线BC的解析式为y=x+3,
∴直线AB与y轴的夹角为45°,当抛物线沿着垂直直线AB的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,
设平移后的抛物线的顶点为P′(t,4﹣t),
则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,
由﹣(x﹣t)2+4﹣t=x+3,
整理得:x2+(1﹣2t)x+t2+t﹣1=0,
∵平移后的抛物线与直线BC最多只有一个公共点,
∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,
解得:t=,
∴平移后的抛物线的顶点为P′(,),平移的最短距离为.
11.(2021•恩施州)如图,在平面直角坐标系中,四边形ABCD为正方形,点A,B在x轴上,抛物线y=x2+bx+c经过点B,D(﹣4,5)两点,且与直线DC交于另一点E.
(1)求抛物线的解析式;
(2)F为抛物线对称轴上一点,Q为平面直角坐标系中的一点,是否存在以点Q,F,E,B为顶点的四边形是以BE为边的菱形.若存在,请求出点F的坐标;若不存在,请说明理由;
(3)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为M,连接ME,BP,探究EM+MP+PB是否存在最小值.若存在,请求出这个最小值及点M的坐标;若不存在,请说明理由.
【解答】解:(1)由点D的纵坐标知,正方形ABCD的边长为5,
则OB=AB﹣AO=5﹣4=1,故点B的坐标为(1,0),
则,解得,
故抛物线的表达式为y=x2+2x﹣3;
(2)存在,理由:
∵点D、E关于抛物线对称轴对称,故点E的坐标为(2,5),
由抛物线的表达式知,其对称轴为直线x=﹣1,故设点F的坐标为(﹣1,m),
由点B、E的坐标得,BE2=(2﹣1)2+(5﹣0)2=26,
设点Q的坐标为(s,t),
∵以点Q,F,E,B为顶点的四边形是以BE为边的菱形,
故点B向右平移1个单位向上平移5个单位得到点E,则Q(F)向右平移1个单位向上平移5个单位得到点F(Q),且BE=EF(BE=EQ),
则或,
解得或,
故点F的坐标为(﹣1,5+)或(﹣1,5﹣)或(﹣1,)或(﹣1,﹣);
(3)存在,理由:
由题意抛物线的对称轴交x轴于点B′(﹣1,0),将点B′向左平移1个单位得到点B″(﹣2,0),
连接B″E,交函数的对称轴于点M,过点M作MP⊥y轴,则点P、M为所求点,此时EM+MP+PB为最小,
理由:∵B′B″=PM=1,且B′B″∥PM,故四边形B″B′PM为平行四边形,则B″M=B′P=BP,
则EM+MP+PB=EM+1+MB″=B″E+1为最小,
由点B″、E的坐标得,直线B″E的表达式为y=(x+2),
当x=﹣1时,y=(x+2)=,故点M的坐标为(﹣1,),
则EM+MP+PB的最小值B″E+1=1+=+1.
12.(2020•恩施州)如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.
(1)求抛物线的解析式;
(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.
(3)△MPC在(2)的旋转变换下,若PC=(如图2).
①求证:EA=ED.
②当点E在(1)所求的抛物线上时,求线段CM的长.
【解答】解:(1)∵点C(6,0)在抛物线上,
∴,
得到6b+c=9,
又∵对称轴为x=2,
∴,
解得b=1,
∴c=3,
∴二次函数的解析式为;
(2)当点M在点C的左侧时,如图2﹣1中:
∵抛物线的解析式为,对称轴为x=2,C(6,0)
∴点A(2,0),顶点B(2,4),
∴AB=AC=4,
∴△ABC是等腰直角三角形,
∴∠1=45°;
∵将△MPC逆时针旋转90°得到△MEF,
∴FM=CM,∠2=∠1=45°,
设点M的坐标为(m,0),
∴点F(m,6﹣m),
又∵∠2=45°,
∴直线EF与x轴的夹角为45°,
∴设直线EF的解析式为y=x+d,
把点F(m,6﹣m)代入得:6﹣m=m+b,解得:d=6﹣2m,
直线EF的解析式为y=x+6﹣2m,
∵直线EF与抛物线只有一个交点,
∴,
整理得:,
∴Δ=b2﹣4ac=0,解得m=,
点M的坐标为(,0).
当点M在点C的右侧时,如下图:
由图可知,直线EF与x轴的夹角仍是45°,因此直线EF与抛物线不可能只有一个交点.
综上,点M的坐标为(,0).
(3)①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,
∵,由(2)知∠BCA=45°,
∴PG=GC=1,
∴点G(5,0),
设点M的坐标为(m,0),
∵将△MPC逆时针旋转90°得到△MEF,
∴EM=PM,
∵∠HEM+∠EMH=∠GMP+∠EMH=90°,
∴∠HEM=∠GMP,
在△EHM和△MGP中,,
∴△EHM≌△MGP(AAS),
∴EH=MG=5﹣m,HM=PG=1,
∴点H(m﹣1,0),
∴点E的坐标为(m﹣1,5﹣m);
∴EA==,
又∵D为线段BC的中点,B(2,4),C(6,0),
∴点D(4,2),
∴ED==,
∴EA=ED.
当点M在点C的右侧时,如下图:
同理,点E的坐标仍为(m﹣1,5﹣m),因此EA=ED.
②当点E在(1)所求的抛物线上时,
把E(m﹣1,5﹣m)代入,整理得:m2﹣10m+13=0,
解得:m=或m=,
∴CM=或CM=.
五.菱形的判定(共1小题)
13.(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.
【解答】证明:∵AE∥BF,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠DBC=∠ABD,
∴∠ADB=∠ABD,
∴AB=AD,
又∵AB=BC,
∴AD=BC,
∵AE∥BF,即AD∥BC,
∴四边形ABCD为平行四边形,
又∵AB=AD,
∴四边形ABCD为菱形.
六.矩形的性质(共1小题)
14.(2021•恩施州)如图,矩形ABCD的对角线AC,BD交于点O,且DE∥AC,AE∥BD,连接OE.求证:OE⊥AD.
【解答】证明:∵四边形ABCD为矩形,
∴OA=OD.
∵DE∥AC,AE∥BD,
∴四边形AODE为平行四边形.
∵OA=OD,
∴平行四边形AODE为菱形.
∴OE⊥AD.
七.正方形的性质(共1小题)
15.(2022•恩施州)如图,已知四边形ABCD是正方形,G为线段AD上任意一点,CE⊥BG于点E,DF⊥CE于点F.求证:DF=BE+EF.
【解答】证明:∵四边形ABCD是正方形,
∴BC=CD,∠BCD=90°,
∵CE⊥BG,DF⊥CE,
∴∠BEC=∠DFC=90°,
∴∠BCE+∠CBE=90°=∠BCE+∠DCF,
∴∠CBE=∠DCF,
在△CBE和△DCF中,
,
∴△CBE≌△DCF(AAS),
∴CF=BE,CE=DF,
∵CE=EF+CF,
∴DF=BE+EF.
八.切线的性质(共1小题)
16.(2022•恩施州)如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.
(1)求证:∠ADE=∠PAE.
(2)若∠ADE=30°,求证:AE=PE.
(3)若PE=4,CD=6,求CE的长.
【解答】(1)证明:连接OA,如图,
∵PA为⊙O的切线,
∴AO⊥PA,
∴∠OAE+∠PAE=90°.
∵DE是⊙O的直径,
∴∠DAE=90°,
∴∠ADE+∠AED=90°.
∵OA=OE,
∴∠OAE=∠AED,
∴∠ADE=∠PAE;
(2)证明:由(1)知:∠ADE=∠PAE=30°,
∵∠DAE=90°,
∴∠AED=90°﹣∠ADE=60°.
∵∠AED=∠PAE+∠APE,
∴∠APE=∠PAE=30°,
∴AE=PE;
(3)解:设CE=x,则DE=CD+CE=6+x,
∴OA=OE=,
∴OC=OE﹣CE=,
OP=OE+PE=.
∵PA、PB为⊙O的切线,
∴PA=PB,PO平分∠APB,
∴PO⊥AB.
∵PA为⊙O的切线,
∴AO⊥PA,
∴△OAC∽△OPA,
∴,
∴,
即:x2+10x﹣24=0.
解得:x=2或﹣12(不合题意,舍去),
∴CE=2.
九.切线的判定与性质(共1小题)
17.(2021•恩施州)如图,在Rt△AOB中,∠AOB=90°,⊙O与AB相交于点C,与AO相交于点E,连接CE,已知∠AOC=2∠ACE.
(1)求证:AB为⊙O的切线;
(2)若AO=20,BO=15,求CE的长.
【解答】(1)证明:∵OC=OE,
∴∠OCE=∠OEC,
∵∠AOC=2∠ACE,
∴∠OCA=∠OCE+∠ACE=(∠OCE+∠OEC+∠AOC)==90°,
∴OC⊥AB,
∴AB为⊙O的切线;
(2)解:作EH⊥AC于H,
∵AO=20,BO=15,
∴AB===25,
∵,
即,
∴OC=12,
∴AE=OA﹣OE=20﹣12=8,
∵EH⊥AC,OC⊥AC,
∴EH∥OC,
∴△AEH∽△AOC,
∴=,
即=,
∴EH=,
∵BC===9,
∴AC=AB﹣BC=25﹣9=16,
∵AH===,
∴CH=AC﹣AH=16﹣=,
∴CE===.
一十.圆的综合题(共1小题)
18.(2020•恩施州)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.
(1)求证:CE是⊙O的切线;
(2)求证:BE=EF;
(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.
【解答】解:(1)如图1中,连接OD,
∵CD=CA,
∴∠CAD=∠CDA,
∵OA=OD
∴∠OAD=∠ODA,
∵直线AM与⊙O相切于点A,
∴∠CAO=∠CAD+∠OAD=90°,
∴∠ODC=∠CDA+∠ODA=90°,
∴CE是⊙O的切线.
(2)如图1中,连接BD,
∵OD=OB,
∴∠ODB=∠OBD,
∵CE是⊙O的切线,BF是⊙O的切线,
∴∠OBE=∠ODE=90°,
∴∠EDB=∠EBD,
∴ED=EB,
∵AM⊥AB,BN⊥AB,
∴AM∥BN,
∴∠CAD=∠BFD,
∵∠CAD=∠CDA=∠EDF,
∴∠BFD=∠EDF,
∴EF=ED,
∴BE=EF.
(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,
设BE=x,则CL=4﹣x,CE=4+x,
∴(4+x)2=(4﹣x)2+62,
解得:x=,
∴,
∵∠BOE=2∠BHE,
∴,
解得:tan∠BHE=或﹣3(﹣3不合题意舍去),
∴tan∠BHE=.
补充方法:如图2中,作HJ⊥EB交EB的延长线于J.
∵tan∠BOE==,
∴可以假设BE=3k,OB=4k,则OE=5k,
∵OB∥HJ,
∴==,
∴==,
∴HJ=k,EJ=k,
∴BJ=EJ﹣BE=k﹣3k=k
∴tan∠BHJ==,
∵∠BHE=∠HBA=∠BHJ,
∴tan∠BHE=.
一十一.解直角三角形的应用-仰角俯角问题(共1小题)
19.(2021•恩施州)乡村振兴使人民有更舒适的居住条件,更优美的生活环境,如图是怡佳新村中的两栋居民楼,小明在甲居民楼的楼顶D处观测乙居民楼楼底B处的俯角是30°,观测乙居民楼楼顶C处的仰角为15°,已知甲居民楼的高为10m,求乙居民楼的高.(参考数据:≈1.414,≈1.732,结果精确到0.1m)
【解答】解:作DE⊥BC于E,CF⊥BD于F,
在Rt△BED中,BE=AD=10m,∠EDB=30°,
∴∠EBD=60°,BD=2BE=20m,
在Rt△CBF中,∠CBF=60°,
∴BF=BC,CF=BC,
在Rt△CDF中,∠CDF=45°,
∴DF=CF=BC,
∵BD=BF+DF,
∴BC+BC=20,
∴BC=≈14.6(m),
答:乙居民楼的高约为14.6m.
一十二.解直角三角形的应用-方向角问题(共2小题)
20.(2022•恩施州)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸,碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A处测得古亭B位于北偏东60°,他们向南走50m到达D点,测得古亭B位于北偏东45°.求古亭与古柳之间的距离AB的长(参考数据:≈1.41,≈1.73,结果精确到1m).
【解答】解:过点B作BC⊥AD,交DA的延长线于点C,
设AC=x米,
∵AD=50米,
∴CD=AC+AD=(x+50)米,
在Rt△ABC中,∠CAB=60°,
∴BC=AC•tan60°=x(米),
在Rt△BCD中,∠BDC=45°,
∴tan45°==1,
∴BC=CD,
∴x=x+50,
∴x=25+25,
∴AC=(25+25)米,
∴AB===50+50≈137(米),
∴古亭与古柳之间的距离AB的长约为137米.
21.(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).
【解答】解:如图,过点P作PH⊥AB于H,
由题意得:AB=30×2=60(海里),∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,
则△PHA是等腰直角三角形,
∴AH=PH,
在Rt△PHA中,设AH=PH=x海里,
在Rt△PBH中,PB=2PH=2x海里,BH=AB﹣AH=(60﹣x)海里,
∴tan∠PBH=tan30°==,
∴,
解得:,
∴PB=2x=≈44(海里),
答:此时船与小岛P的距离约为44海里.
一十三.条形统计图(共1小题)
22.(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:
(1)本次共调查了 50 名学生;
(2)补全条形统计图;
(3)D类所对应扇形的圆心角的大小为 36° ;
(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有 150 名.
【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).
故答案为:50;
(2)C类学生人数为:50﹣15﹣20﹣5=10(名),
条形图如下:
(3)D类所对应扇形的圆心角为:.
故答案为:36°;
(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:(名).
故答案为:150.
一十四.方差(共1小题)
23.(2021•恩施州)九(1)班准备从甲、乙两名男生中选派一名参加学校组织的一分钟跳绳比赛,在相同的条件下,分别对两名男生进行了八次一分钟跳绳测试.现将测试结果绘制成如下不完整的统计图表,请根据统计图表中的信息解答下列问题:
平均数
中位数
众数
方差
甲
175
a
b
93.75
乙
175
175
180,175,170
c
(1)求a、b的值;
(2)若九(1)班选一位成绩稳定的选手参赛,你认为应选谁,请说明理由;
(3)根据以上的数据分析,请你运用所学统计知识,任选两个角度评价甲乙两名男生一分钟跳绳成绩谁优.
【解答】解:(1)甲的成绩从小到大排列为:160,165,165,175,180,185,185,185,
∴甲的中位数a==177.5,
∵185出现了3次,出现的次数最多,
∴众数b是185,
故a=177.5,b=185;
(2)应选乙,
理由:乙的方差为:[2×(175﹣175)2+2×(180﹣175)2+2×(170﹣175)2+(185﹣175)2+(165﹣175)2]=37.5,
乙的方差小于甲的方差,所以乙的成绩比甲的成绩稳定;
(3)①从平均数和方差相结合看,乙的成绩比较稳定;
②从平均数和中位数相结合看,甲的成绩好些.
一十五.列表法与树状图法(共1小题)
24.(2022•恩施州)2022年4月29日,湖北日报联合夏风教室发起“劳动最光荣,加油好少年”主题活动.某校学生积极参与本次主题活动,为了解该校学生参与本次主题活动的情况,随机抽取该校部分学生进行调查.根据调查结果绘制如下不完整的统计图(如图).请结合图中信息解答下列问题:
(1)本次共调查了 200 名学生,并补全条形统计图.
(2)若该校共有1200名学生参加本次主题活动,则本次活动中该校“洗衣服”的学生约有多少名?
(3)现从参与本次主题活动的甲、乙、丙、丁4名学生中,随机抽取2名学生谈一谈劳动感受.请用列表或画树状图的方法,求甲、乙两人同时被抽中的概率.
【解答】解:(1)40÷20%=200(人),200﹣40﹣50﹣30﹣20=60(人),
故答案为:200,补全条形统计图如下:
(2)1200×=300(人),
答:该校1200名学生中参与“洗衣服”的学生约有300名;
(3)从甲、乙、丙、丁四个人中选择2个人所有可能出现的结果情况如下:
共有12种可能出现的结果,其中甲、乙同时被抽中的有2种,
所以甲、乙同时被抽中的概率为=.
相关试卷
这是一份湖北省齐齐哈尔市三年(2020-2022)中考数学真题分类汇编-03解答题,共45页。试卷主要包含了0+4cs45°﹣|1﹣|;,0+|﹣|,解方程,综合与探究等内容,欢迎下载使用。
这是一份湖北省鄂州市三年(2020-2022)中考数学真题分类汇编-03解答题,共46页。试卷主要包含了先化简,再求值,先化简÷+,再从﹣2,的关系如图所示,,他们称等内容,欢迎下载使用。
这是一份广西梧州三年(2020-2022)中考数学真题分类汇编-03解答题,共33页。试卷主要包含了÷2,,其中+|y+2|=0,运用方程或方程组解决实际问题,解方程,解不等式组等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)