人教版七年级下册第五章 相交线与平行线综合与测试当堂检测题
展开新人教版七年级下第5章相交线与平行线练习A卷
姓名:__________班级:__________考号:__________
一 、选择题(本大题共12小题,每小题4分,共48分)
1.如图,与∠1是同旁内角的是( )
A.∠2 B.∠3 C.∠4 D.∠5
2.下列图形中∠1和∠2是对顶角的是( )
A. B.C.D.
3.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是( )
A.55° B.65° C.75° D.85°
4.如图,能判定EC∥AB的条件是( )
A.∠B=∠ACB B.∠A=∠ACE C.∠B=∠ACE D.∠A=∠ECD
5.如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是( )
A.25° B.35° C.50° D.65°
6.如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2等于( )
A.50° B.60° C.65° D.90°
7.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是( )
A.a=﹣2 B.a= C.a=1 D.a=
8.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( )
A.75°36′ B.75°12′ C.74°36′ D.74°12′
9.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为( )
A.50° B.60° C.120° D.130°
10.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于( )
A.130° B.138° C.140° D.142°
11.观察下面图案,在A.B、C、D四幅图案中,能通过如图的图案平移得到的是( )
A. B. C. D.
12.下列说法不正确的是( )
A.过任意一点可作已知直线的一条平行线
B.同一平面内两条不相交的直线是平行线
C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直
D.平行于同一直线的两直线平行
二 、填空题(本大题共6小题,每小题4分,共24分)
13.一个角的度数为20°,则它的补角的度数为 .
14.如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为 .
15.下列命题中,(1)一个锐角的余角小于这个角;(2)两条直线被第三条直线所截,内错角相等;(3)a,b,c是直线,若a⊥b,b⊥c,则a⊥c;(4)若a2+b2=0,则a,b都为0.是假命题的有 .(请填序号)
16.如图,已知∠1=∠2=∠3=62°,则∠4= 度.
17.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′= .
18.如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是 .
三 、解答题(本大题共8小题,共78分)
19.如图,AB∥DC,∠1=∠B,∠2=∠3.
(1)ED与BC平行吗?请说明理由;
(2)AD与EC的位置关系如何?为什么?
(3)若∠A=48°,求∠4的度数.
注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.
解:
(1)ED∥BC,理由如下:
∵AB∥DC,( 已知 )
∴∠1=∠__________.(__________)
又∵∠1=∠B,( 已知 )
∴∠B=__________,( 等量代换 )
∴__________∥__________.(__________)
(2)AD与EC的位置关系是:__________.
∵ED∥BC,( 已知 )
∴∠3=∠__________.(__________)
又∵∠2=∠3,( 已知 )
∴∠__________=∠__________.( 等量代换 )
∴__________∥__________.(__________)
20.读下列语句,并画出图形:
直线AB、CD是相交直线,点P是直线AB,CD外一点,直线EF经过点P,且与直线AB平行,与直线CD相交于点E.
21.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.
22.如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.
23.如图,AB∥CD,EF交AB于点G,交CD与点F,FH交AB于点H,∠AGE=70°,∠BHF=125°,FH平分∠EFD吗?请说明你的理由.
24.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.
25.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.
26.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.
(1)求∠DOF的度数;
(2)试说明OD平分∠AOG.
新人教版七年级下第5章相交线与平行线练习A卷答案解析
一 、选择题
1. 分析:根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.
解:A.∠1和∠2是对顶角,不是同旁内角,故本选项错误;
B、∠1和∠3是同位角,不是同旁内角,故本选项错误;
C、∠1和∠4是内错角,不是同旁内角,故本选项错误;
D、∠1和∠5是同旁内角,故本选项正确;
故选D.
2. 分析:一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角.依据定义即可判断.
解:互为对顶角的两个角:一个角的两边分别是另一个角的反向延伸线.满足条件的只有D.
故选D.
3.分析:根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数.
解:∵AB∥CD,
∴∠1+∠F=180°,
∵∠1=115°,
∴∠AFD=65°,
∵∠2和∠AFD是对顶角,
∴∠2=∠AFD=65°,
故选B.
4. 分析:直接利用平行线的判定定理判定即可求得答案.注意排除法在解选择题中的应用.
解:∵当∠B=∠ECD或∠A=∠ACE时,EC∥AB;
∴B正确,A,C,D错误.
故选B.
5. 分析:先根据三角形内角和定理求出∠C的度数,然后根据两直线平行内错角相等即可求出∠ABC的大小.
解:∵CB⊥DB,
∴∠CBD=90°,
∴∠C+∠D=90°,
∵∠D=65°,
∴∠C=25°,
∵AB∥CD,
∴∠BAC=∠C=25°.
故选A.
6. 分析:由AB∥CD,∠1=50°,根据两直线平行,同旁内角互补,即可求得∠BEF的度数,又由EG平分∠BEF,求得∠BEG的度数,然后根据两直线平行,内错角相等,即可求得∠2的度数.
解:∵AB∥CD,
∴∠BEF+∠1=180°,
∵∠1=50°,
∴∠BEF=130°,
∵EG平分∠BEF,
∴∠BEG=∠BEF=65°,
∴∠2=∠BEG=65°.
故选C.
7. 分析:反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.
解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,
故选A.
8. 分析:过点D作DF⊥AO交OB于点F.根据题意知,DF是∠CDE的角平分线,故∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数.
解:过点D作DF⊥AO交OB于点F.
∵入射角等于反射角,
∴∠1=∠3,
∵CD∥OB,
∴∠1=∠2(两直线平行,内错角相等);
∴∠2=∠3(等量代换);
在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,
∴∠2=90°﹣37°36′=52°24′;
∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.
故选B.
9.分析:根据邻补角的定义求出∠3,再根据两直线平行,同位角相等解答.
解:如图,∠3=180°﹣∠1=180°﹣120°=60°,
∵a∥b,
∴∠2=∠3=60°.
故选:B.
10. 分析:根据平行线的判定推出AB∥CD,根据平行线的性质求出∠BPF,即可求出∠2的度数.
解:如图:
∵AB⊥GH,CD⊥GH,
∴∠GMB=∠GOD=90°,
∴AB∥CD,
∴∠BPF=∠1=42°,
∴∠2=180°﹣∠BPF=180°﹣42°=138°,
故选B.
11. 分析:根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移可直接得到答案.
解:根据平移得到的是B.
故选:B.
12. 分析:根据平行线的定义及平行公理进行判断.
解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.
B、C、D是公理,正确.
故选A.
二 、填空题
13. 分析:根据邻补角的定义列式求解
解:∵两角互补,和为180°,
∴它的补角=180°-20°=160°
故答案为160°
14. 分析:先利用邻补角可计算出∠BDC=30°,再利用平行线的性质得∠ABD=∠BDC=30°,接着根据角平分线定义得∠CBD=∠ABD=30°,然后根据三角形内角和计算∠C的度数.
解:∵∠CDE=150°,
∴∠BDC=180°﹣150°=30°,
∵AB∥CD,
∴∠ABD=∠BDC=30°,
∵BE平分∠ABC,
∴∠CBD=∠ABD=30°,
∴∠C=180°﹣∠BDC﹣∠CBD=180°﹣30°﹣30°=120°.
故答案为120°.
15. 分析:利于锐角的定义、平行线的性质、垂直的定义等知识分别判断后即可确定正确的选项.
解:(1)一个锐角的余角小于这个角,错误,是假命题;
(2)两条直线被第三条直线所截,内错角相等,正确,是真命题;
(3)a,b,c是直线,若a⊥b,b⊥c,则a∥c,故错误,是假命题;
(4)若a2+b2=0,则a,b都为0,正确,为真命题,
故答案为(1)(3).
16. 分析:因为∠1=∠2=∠3=62°,所以可知两直线a、b平行,由同旁内角互补求得∠4结果.
解:∵∠1=∠3,
∴两直线a、b平行;
∴∠2=∠5=62°,
∵∠4与∠5互补,
∴∠4=180°﹣62°=118°.
17. 分析:直接利用平移的性质得出顶点C平移的距离.
解:∵把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,
∴三角板向右平移了5个单位,
∴顶点C平移的距离CC′=5.
故答案为:5.
18. 分析:先根据直线a∥b,∠2=65°得出∠FDE的度数,再由EF⊥CD于点F可知∠DFE=90°,故可得出∠1的度数.
解:∵直线a∥b,∠2=65°,
∴∠FDE=∠2=65°,
∵EF⊥CD于点F,
∴∠DFE=90°,
∴∠1=90°﹣∠FDE=90°﹣65°=25°.
故答案为:25°.
三 、解答题
19. 分析:只需要根据两直线平行的判定方法及性质填写对应的空即可
解:(1)ED∥BC,理由如下:
∵AB∥DC,( 已知 ),
∴∠1=∠AED( 两直线平行,内错角相等 ),
又∵∠1=∠B( 已知 ),
∴∠B=∠AED( 等量代换 ),
∴ED∥BC( 同位角相等,两直线平行 ),
故答案为:AED,两直线平行,内错角相等,∠AED,ED,BC;
(2)AD与EC的位置关系是:AD∥EC,
∵ED∥BC( 已知 ),
∴∠3=∠CED( 两直线平行,内错角相等 ),
又∵∠2=∠3( 已知 ),
∴∠2=∠CED( 等量代换 ),
∴AD∥EC( 内错角相等,两直线平行 ),
故答案为:AD∥EC,CED,两直线平行,内错角相等,2,CED,AD,EC,内错角相等,两直线平行.
20. 分析:首先画出两条相交直线,然后再在直线AB,CD外确定点P,然后点P作直线EF与直线AB平行即可.
解:如图所示:
.
21.分析:根据对顶角的性质得到BD∥CE的条件,然后根据平行线的性质得到∠B=∠C,已知∠C=∠D,则得到满足AB∥EF的条件,再根据两直线平行,内错角相等得到∠A=∠F.
证明:∵∠2=∠3,∠1=∠2,
∴∠1=∠3,
∴BD∥CE,
∴∠C=∠ABD;
又∵∠C=∠D,
∴∠D=∠ABD,
∴AB∥EF,
∴∠A=∠F.
22. 分析:根据平行线的性质求得∠3的度数,即可求得∠2的度数
解:
∵AB⊥BC,
∴∠ABC=90°,
∴∠1+∠3=90°,
∵∠1=55°,
∴∠3=35°,
∵a∥b,
∴∠2=∠3=35°.
23. 分析:由平行线的性质可找出相等和互补的角,根据角的计算找出∠EFD=2∠DFH=110°,从而得出FH平分∠EFD的结论.
解:FH平分∠EFD,理由如下:
∵AB∥CD,
∴∠CFE=∠AGE,∠BHF+∠DFH=180°,
∵∠AGE=70°,∠BHF=125°,
∴∠CFE=70°,∠DFH=55°,
∵∠EFD=180°﹣∠CFE=110°,
∴∠EFD=2∠DFH=110°.
∴FH平分∠EFD.
24. 分析: 根据四边形的内角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根据角平分线定义、等角的余角相等易证明和BE与DF两条直线有关的一对同位角相等,从而证明两条直线平行.
解:BE∥DF.理由如下:
∵∠A=∠C=90°(已知),
∴∠ABC+∠ADC=180°(四边形的内角和等于360°).
∵BE平分∠ABC,DF平分∠ADC,
∴∠1=∠2=∠ABC,∠3=∠4=∠ADC(角平分线的定义).
∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°(等式的性质).
又∠1+∠AEB=90°(三角形的内角和等于180°),
∴∠3=∠AEB(同角的余角相等).
∴BE∥DF(同位角相等,两直线平行).
25. 分析:由图中题意可先猜测∠AED=∠C,那么需证明DE∥BC.题中说∠1+∠2=180°,而∠1+∠4=180°所以∠2=∠4,那么可得到BD∥EF,题中有∠3=∠B,所以应根据平行得到∠3与∠ADE之间的关系为相等.就得到了∠B与∠ADE之间的关系为相等,那么DE∥BC.
证明:∵∠1+∠4=180°(邻补角定义)
∠1+∠2=180°(已知)
∴∠2=∠4(同角的补角相等)
∴EF∥AB(内错角相等,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
又∵∠B=∠3(已知),
∴∠ADE=∠B(等量代换),
∴DE∥BC(同位角相等,两直线平行)
∴∠AED=∠C(两直线平行,同位角相等).
26. 分析:(1)根据两直线平行,同位角相等可得∠FOB=∠A=30°,再根据角平分线的定义求出∠COF=∠FOB=30°,然后根据平角等于180°列式进行计算即可得解;
(2)先求出∠DOG=60°,再根据对顶角相等求出∠AOD=60°,然后根据角平分线的定义即可得解.
解:(1)∵AE∥OF,
∴∠FOB=∠A=30°,
∵OF平分∠BOC,
∴∠COF=∠FOB=30°,
∴∠DOF=180°﹣∠COF=150°;
(2)∵OF⊥OG,
∴∠FOG=90°,
∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°,
∵∠AOD=∠COB=∠COF+∠FOB=60°,
∴∠AOD=∠DOG,
∴OD平分∠AOG.
人教版七年级下册第五章 相交线与平行线综合与测试课堂检测: 这是一份人教版七年级下册第五章 相交线与平行线综合与测试课堂检测,共13页。试卷主要包含了填空题等内容,欢迎下载使用。
初中数学人教版七年级下册第九章 不等式与不等式组综合与测试同步练习题: 这是一份初中数学人教版七年级下册第九章 不等式与不等式组综合与测试同步练习题,共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2021学年第五章 相交线与平行线综合与测试练习: 这是一份2021学年第五章 相交线与平行线综合与测试练习,共20页。试卷主要包含了 分析,分析等内容,欢迎下载使用。