![新人教版七年级下第5章相交线与平行线练习B卷01](http://m.enxinlong.com/img-preview/2/3/13279491/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新人教版七年级下第5章相交线与平行线练习B卷02](http://m.enxinlong.com/img-preview/2/3/13279491/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新人教版七年级下第5章相交线与平行线练习B卷03](http://m.enxinlong.com/img-preview/2/3/13279491/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第五章 相交线与平行线综合与测试练习
展开新人教版七年级下第5章相交线与平行线练习B卷
姓名:__________班级:__________考号:__________
一 、选择题(本大题共12小题,每小题4分,共48分)
1.如图,已知a∥b,∠1=60°,则∠2的度数是( )
A.30° B.60° C.90° D.120°
2.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )
A.1个 B.2个 C.3个 D.4个
3.下列说法正确的是( )
A.若两条直线被第三条直线所截,则同旁内角互补
B.相等的角是对顶角
C.有一条公共边并且和为180°的两个角互为邻补角
D.若三条直线两两相交,则共有6对对顶角
4.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB、AC于E、F两点;再分别以E、F为圆心,大于EF长为半径作圆弧,两条圆弧交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC的大小是( )
A.20° B.25° C.30° D.40°
5.如下图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P( )
A.有且只有1个 B.有且只有2个
C.组成∠E的角平分线 D.组成∠E的角平分线所在的直线(E点除外)
6.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=( )
A.30° B.35° C.36° D.40°
7.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )
A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长
C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长
8.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。”乙说:“两项都参加的人数小于5人。”对于甲、乙两人的说法,有下列四个命题,其中真命题的是( )
A.若甲对,则乙对;B.若乙对,则甲对;C.若乙错,则甲错;D.若甲粗,则乙对
9.用3根火柴棒最多能拼出( )
A.4个直角 B.8个直角 C.12个直角 D.16个直角
10.如图所示,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为( )
①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥线段AB是点B到AC的距离;⑦AD>BD.
A.3个 B.4个 C.7个 D.0个
11.小明、小亮、小刚、小颖一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,
小明说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”
小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB,
可得到∠CDG=∠BFE.”
小刚说:“∠AGD一定大于∠BFE.”
小颖说:“如果连接GF,则GF一定平行于AB.”
他们四人中,有( )个人的说法是正确的.
A.1 B.2 C.3 D.4
12.如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为( )
A.5 B.6 C.7 D.8
二 、填空题(本大题共6小题,每小题4分,共24分)
13.已知直线a∥b,一块直角三角板如图所示放置,若∠1=37°,则∠2=______.
14.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为 度.
15.如图,将三角形纸板ABC沿直线AB向右平行移动,使∠A到达∠B的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为__________.
16.如图,点A,C,F,B在同一条直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为 度(用关于α的代数式表示).
17.如图,OA⊥OB,OC⊥OD.若∠AOD=144°,则∠BOC= .
18.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°.∠BCD=n°,则∠BED的度数为 度.
三 、解答题(本大题共8小题,共78分)
19.如图,在下列解答中,填空或填写适当的理由:
(1)∵AB∥FE,( 已知 )
∴∠A=∠__________,(__________ )
∠2=∠__________,(__________ )
∠B+∠__________=180°.(__________ )
(2)∵∠2=∠__________,(已知 )
∴AC∥DE.(__________ )
(3)∵∠3=∠__________,( 已知 )
∴__________∥__________.(__________ )
20.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.
21.如图,在四边形ABCD中,∠A=104°﹣∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.
22.如图,直线AB∥CD,BC平分∠ABD,,求的度数.
23.如图,点P是∠ABC内一点.
(1)按下列要求画出图形.
①过点P画BC的垂线,垂足为点D;
②过点P画AB的平行线交BC于点E;过点P画BC的平行线交AB于点F.
(2)在(1)所画出的图形中,若∠ABC=54°,则∠DPE=__________度.
24.如图所示,AB∥CD,∠CFE的平分线与∠EGB平分线的反向延长线交于点P,若∠E=20°,则∠FPH的度数为多少?
25.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.
(1)∠1与∠2有什么关系,为什么?
(2)BE与DF有什么关系?请说明理由.
26.已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系 ;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
新人教版七年级下第5章相交线与平行线练习B卷答案解析
一 、选择题
1. 分析:根据平行线的性质进行解答.
解:∵a∥b,∠1=60°,
∴∠2=∠1=60°,
故选B.
2. 分析:根据垂线段的定义直接观察图形进行判断.
解:从左向右第一个图形中,BE不是线段,故错误;
第二个图形中,BE不垂直AC,所以错误;
第三个图形中,是过点E作的AC的垂线,所以错误;
第四个图形中,过点C作的BE的垂线,也错误.
故选D.
3. 分析:根据平行线的性质、对顶角的定义和性质、邻补角的定义判断.
解:A.应该是“若两条平行直线被第三条直线所截,则同旁内角互补”,故错误;
B、相等的角不一定都是对顶角,如两直线平行,其中的同位角相等但不是对顶角,故错误;
C、如果这两个角在公共边的同侧,则不是邻补角,故错误;
D、正确.
故选D.
4. 分析:根据题意可得AH平分∠CAB,再根据平行线的性质可得∠CAB的度数,再根据角平分线的性质可得答案.
解:由题意可得:AH平分∠CAB,
∵AB∥CD,
∴∠C+∠CAB=180°,
∵∠ACD=140°,
∴∠CAB=40°,
∵AH平分∠CAB,
∴∠HAB=20°,
∴∠AHC=20°.
故选A.
5. 分析:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD
解:因为AB=CD,所以要使S△PAB=S△PC D成立,那么点P到AB,CD的距离应相等,当点P在组成∠E的角平分线所在的直线(E点除外)上时,点P到AB,CD的距离相等,
故答案选D.
6. 分析:过点A作l1的平行线,过点B作l2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解
解:如图,过点A作l1的平行线,过点B作l2的平行线,
∴∠3=∠1,∠4=∠2,
∵l1∥l2,
∴AC∥BD,
∴∠CAB+∠ABD=180°,
∴∠3+∠4=125°+85°﹣180°=30°,
∴∠1+∠2=30°.
故选A.
7. 分析: 分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案.
解:由图形可得出:甲所用铁丝的长度为:2a+2b,
乙所用铁丝的长度为:2a+2b,
丙所用铁丝的长度为:2a+2b,
故三种方案所用铁丝一样长.
故选:D.
8.分析:针对逻辑判断问题逐一分析作出判断
解:A.若甲对,即只参加一项的人数大于14人,等价于等于15或16或17或18或19人,则两项都参加的人数为5或4或3或2或1人,故乙不对;
B.若乙对,即两项都参加的人数小于5人,等价于等于4或3或2或1人,则只参加一项的人数为等于16或17或18或19人,故甲对;
C.若乙错,即两项都参加的人数大于或等于5人,则只参加一项的人数小于或等于15人,故甲可能对可能错;
D.若甲粗,即只参加一项的人数小于或等于14人,则两项都参加的人数大于或等于6人,故乙错.
综上所述,四个命题中,其中真命题是“若乙对,则甲对”.
故选B.
9. 分析:当3根火柴棒有公共交点且两两垂直时,可拼出“三线十二角”,十二个角都是直角.
解:如图所示,当3根火柴棒有公共交点且两两垂直时(是立体图形),
可构成12个直角.
故选C.
10. 分析:本题要根据垂线定义、垂线段定义(定理)、点到直线的距离定义,逐一判断.
解:∵∠BAC=90°∴①AB⊥AC正确;
∵∠DAC≠90°,∴AD与AC不互相垂直,所以②错误;
点C到AB的垂线段应是线段AC,所以③错误;
点A到BC的距离是线段AD的长度,所以④正确;
根据“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.”可知⑤正确;
线段AB的长度是点B到AC的距离,所以⑥错误;
AD>BD不一定,所以⑦错误.
故选A.
11. 分析:由EF⊥AB,CD⊥AB,知CD∥EF,然后根据平行线的性质与判定即可得出答案;
解:已知EF⊥AB,CD⊥AB,∴CD∥EF,
(1)若∠CDG=∠BFE,
∵∠BCD=∠BFE,
∴∠BCD=∠CDG,
∴DG∥BC,
∴∠AGD=∠ACB.
(2)若∠AGD=∠ACB,
∴DG∥BC,
∴∠BCD=∠CDG,∠BCD=∠BFE,
∴∠CDG=∠BFE.
(3)∵DG不一定平行于BC,所以∠AGD不一定大于∠BFE;
(4)如果连接GF,则GF不一定平行于AB;
综上知:正确的说法有两个.
故选B.
12. 分析:由FM平分∠EFD可知:与∠DFM相等的角有∠EFM;由于AB∥CD,EG、EM、FM分别平分∠AEF、∠BEF、∠EFD,根据平行线的性质和判定定理可以推导出FM∥EG,由此可以写出与∠DFM相等的角.
解:∵FM平分∠EFD,
∴∠EFM=∠DFM=∠CFE,
∵EG平分∠AEF,
∴∠AEG=∠GEF=∠AEF,
∵EM平分∠BEF,
∴∠BEM=∠FEM=∠BEF,
∴∠GEF+∠FEM=(∠AEF+∠BEF)=90°,即∠GEM=90°,
∠FEM+∠EFM=(∠BEF+∠CFE),
∵AB∥CD,
∴∠EGF=∠AEG,∠CFE=∠AEF
∴∠FEM+∠EFM=(∠BEF+∠CFE)=(BEF+∠AEF)=90°,
∴在△EMF中,∠EMF=90°,
∴∠GEM=∠EMF,
∴EG∥FM,
∴与∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三个角的对顶角.
故选C.
二 、填空题
13. 分析:首先作平行线,然后根据平行线的性质可得到∠1+∠2=90°,据此求出∠2的度数.
解:作直线AB∥a,
∵a∥b
∴AB∥a∥b,
∵AB∥a,
∴∠1=∠3,
∵AB∥b,
∴∠2=∠4,
∵∠3+∠4=90°,
∴∠1+∠2=90°,
∵∠1=37°,
∴∠2=90°﹣37°=53°,
故答案为53°.
14. 分析:由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.
解:由平移的性质知,AO∥SM,
故∠WMS=∠OWM=22°;
故答案为:22.
15. 分析:根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,进而求出∠CBE的度数.
解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,
∴AC∥BE,
∴∠CAB=∠EBD=50°,
∵∠ABC=100°,
∴∠CBE的度数为:180°﹣50°﹣100°=30°.
故答案为:30°
16. 分析:根据∠ECA=α,∠ECA+∠ECB=180°可得:∠ECB=180°-α,根据CD平分∠ECB可得∠DCB=∠ECB=90°-α,根据FG∥CD可得:∠GFB=∠DCB=90°-α.
17. 分析:根据垂直的定义知∠AOB=∠COD=90°,然后由周角的定义即可求得∠BOC的度数.
解:∵OA⊥OB,OC⊥OD,
∴∠AOB=∠COD=90°;
又∵∠AOD+∠AOB+∠BOC+∠COD=360°,∠AOD=144°,
∴∠BOC=36°;
故答案是:36°.
18. 分析:先根据角平分线的定义,得出∠ABE=∠CBE=∠ABC,∠ADE=∠CDE=∠ADC,再根据三角形内角和定理,推理得出∠BAD+∠BCD=2∠E,进而求得∠E的度数.
解:∵BE平分∠ABC,DE平分∠ADC,
∴∠ABE=∠CBE=∠ABC,∠ADE=∠CDE=∠ADC,
∵∠ABE+∠BAD=∠E+∠ADE,∠BCD+∠CDE=∠E+∠CBE,
∴∠ABE+∠BAD+∠BCD+∠CDE=∠E+∠ADE+∠E+∠CBE,
∴∠BAD+∠BCD=2∠E,
∵∠BAD=70°,∠BCD=n°,
∴∠E=(∠D+∠B)=35+.
故答案为:35+
三 、解答题
19. 分析:只需要根据两直线平行的判定方法及性质填写对应的空即可
解:(1)∵AB∥FE,( 已知 )
∴∠A=∠EFC,(两直线平行,同位角相等),
∠2=∠BDE,(两直线平行,内错角相等),
∠B+∠BEF=180°.(两直线平行,同旁内角互补).
故答案为:EFC,两直线平行,同位角相等;BDE,两直线平行,内错角相等;BEF,两直线平行,同旁内角互补;
(2)∵∠2=∠EFC,(已知),
∴AC∥DE.(内错角相等,两直线平行);
故答案为:EFC,内错角相等,两直线平行;
(3)∵∠3=∠B,(已知)
∴AB∥EF.(同位角相等,两直线平行).
故答案为:∠B;AB,EF,同位角相等,两直线平行
20. 分析:首先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.
证明:∵BE⊥FD,
∴∠EGD=90°,
∴∠1+∠D=90°,
又∠2和∠D互余,即∠2+∠D=90°,
∴∠1=∠2,
又已知∠C=∠1,
∴∠C=∠2,
∴AB∥CD.
21. 分析:根据同旁内角互补,两直线平行先求出AD∥BC,然后根据两直线平行,内错角相等求出∠1=∠DBC,再根据垂直于同一直线的两直线互相平行求出BD∥EF,然后根据两直线平行,同位角相等即可得解.
解:能辨认∠1=∠2.
理由如下:∵∠A=104°﹣∠2,∠ABC=76°+∠2,
∴∠A+∠ABC=104°﹣∠2+76°+∠2=180°,
∴AD∥BC(同旁内角互补,两直线平行),
∴∠1=∠DBC(两直线平行,内错角相等),
∵BD⊥DC,EF⊥DC,
∴BD∥EF(根据垂直于同一直线的两直线平行),
∴∠2=∠DBC(两直线平行,同位角相等),
∴∠1=∠2.
22. 分析:由AB∥CD得到∠ABC=∠1,又因为BC平分∠ABD,所以∠ABD=2∠1=∠BDC
∠2=180-∠BDC
解:∵AB∥CD,
∴,.
∵,
∴,
∴,
∴.
23. 分析:(1)①直接利用尺规过点P作PD⊥BC的垂线即可;
②利用尺规通过平移分别作BC,AB的平行线即可;
(2)首先得到四边形FBEP是平行四边形,然后利用平行四边形的性质得到∠EPF=∠B,然后利用垂直的定义求得结论即可.
解:(1)如图所示;
(2)∵AB∥PE,FP∥BD,
∴四边形FBPE是平行四边形,
∴∠FPE=∠B=54°,
∴∠DPE=90°﹣54°=36°,
故答案为:36.
24. 分析:作PM∥CD,如图,则AB∥PM∥CD,根据平行线的性质得∠4=∠2,∠3=∠1,则∠FPH=∠1+∠2,再利用角平分线定义得到∠CFQ=2∠1,∠EGB=2∠BGH,而∠BGH=∠2,所以∠FPH=(∠CFQ+∠EGB),利用三角形外角性质得∠EGB=∠E+∠EQG,利用邻补角得∠EQG=180°﹣∠EQA,利用平行线的性质得∠CFQ=∠EQA,则∠EGB=∠E+180°﹣∠CFQ,于是得到∠FPH=(∠CFQ+∠E+180°﹣∠CFQ)=(20°+180°),然后把∠E=20°代入计算即可.
解:作PM∥CD,如图,
∵AB∥CD,
∴AB∥PM∥CD,
∴∠4=∠2,∠3=∠1,
∴∠FPH=∠1+∠2,
∵∠CFE的平分线与∠EGB的平分线的反向延长线交于点P,
∴∠CFQ=2∠1,∠EGB=2∠BGH,
∵∠BGH=∠2,
∴∠FPH=(∠CFQ+∠EGB),
∵∠EGB=∠E+∠EQG,
∵∠EQG=180°﹣∠EQA,
∵CD∥AB,
∴∠CFQ=∠EQA,
∴∠EGB=∠E+180°﹣∠CFQ,
∴∠FPH=(∠CFQ+∠E+180°﹣∠CFQ)
=(20°+180°)
=100°.
25. 分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;
(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.
解:(1)∠1+∠2=90°;
∵BE,DF分别是∠ABC,∠ADC的平分线,
∴∠1=∠ABE,∠2=∠ADF,
∵∠A=∠C=90°,
∴∠ABC+∠ADC=180°,
∴2(∠1+∠2)=180°,
∴∠1+∠2=90°;
(2)BE∥DF;
在△FCD中,∵∠C=90°,
∴∠DFC+∠2=90°,
∵∠1+∠2=90°,
∴∠1=∠DFC,
∴BE∥DF.
26. 分析:(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;
(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
解:(1)如图1,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,则
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+3α+(3α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②联立方程组,解得α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
人教版七年级下册第五章 相交线与平行线综合与测试课堂检测: 这是一份人教版七年级下册第五章 相交线与平行线综合与测试课堂检测,共13页。试卷主要包含了填空题等内容,欢迎下载使用。
人教版七年级下册第五章 相交线与平行线综合与测试当堂检测题: 这是一份人教版七年级下册第五章 相交线与平行线综合与测试当堂检测题,共16页。试卷主要包含了是假命题的有 等内容,欢迎下载使用。
人教版七年级下册第九章 不等式与不等式组综合与测试同步测试题: 这是一份人教版七年级下册第九章 不等式与不等式组综合与测试同步测试题,共22页。试卷主要包含了已知点M,不等式>﹣1的正整数解的个数是,对于不等式组下列说法正确的是,运行程序如图所示,规定,现规定一种运算,如图是测量一颗玻璃球体积的过程等内容,欢迎下载使用。