所属成套资源:2023年高考数学(理数)一轮复习课时 达标练习(答案版+教师版)
2023年高考数学(理数)一轮复习课时36《由三视图求几何体面积、体积》达标练习(含详解)
展开
这是一份2023年高考数学(理数)一轮复习课时36《由三视图求几何体面积、体积》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时36《由三视图求几何体面积体积》达标练习含详解doc、2023年高考数学理数一轮复习课时36《由三视图求几何体面积体积》达标练习教师版doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
2023年高考数学(理数)一轮复习课时36《由三视图求几何体面积、体积》达标练习一 、选择题1.一个几何体的三视图如图所示(单位:cm),则该几何体的表面积为( )A.10 cm2 B.cm2 C.cm2 D.(10+)cm22.如下图所示,在三棱锥D-ABC中,已知AC=BC=CD=2,CD⊥平面ABC,∠ACB=90°.若其正视图、俯视图如右图所示,则其侧视图的面积为( )A. B.2 C. D.3.把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为( )A. B. C. D.4.一个几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是( )A.π B.π C.π D.π5.一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A.72+6π B.72+4π C.48+6π D.48+4π6.已知在长方体ABCDA1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是( )A. B. C. D.7.如图为某个几何体的三视图,则该几何体的体积为( )A.12- B.12-π C.12- D.12-8.圆环内圆半径为4,外圆半径为5,则圆环绕其对称轴旋转一周形成的几何体的体积为( )A. B. C. D.9.一个几何体的三视图如图所示,则该几何体的体积为( )A.π B. C. D.10.已知四棱锥SABCD的所有顶点都在球O的球面上,SD⊥平面ABCD,底面ABCD是等腰梯形,AB∥CD且满足AB=2AD=2DC=2,且∠DAB=,SC=,则球O的表面积是( )A.5π B.4π C.3π D.2π11.一锥体的三视图如图所示,则该棱锥的最长棱的棱长为( )A. B. C. D.12.已知正方体ABCD-A′B′C′D′的外接球的体积为,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为( )A.+ B.3+或+ C.2+ D.+或2+二 、填空题13.如图,在四棱锥PABCD中,底面ABCD是矩形,PD⊥底面ABCD,M,N分别为AB,PC的中点,PD=AD=2,AB=4.则点A到平面PMN的距离为________.14.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为2 cm的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2 cm的圆(包括圆心),则该零件的体积是______.15.已知三棱锥A-BCD中,AB=AC=BC=2,BD=CD=,点E是BC的中点,点A在平面BCD内的射影恰好为DE的中点,则该三棱锥外接球的表面积为________.16.在四棱锥S-ABCD中,AB//CD,,,,则三棱锥S-ABD外接球的表面积为______.
0.答案解析1.答案为:D;解析:由三视图可知,该几何体为三棱锥,其直观图如图所示,其中底面是底边长为4,高为3的等腰三角形,后侧面是底边长为4,高为2的三角形,左边一个侧面是等腰三角形,还有一个侧面是非特殊三角形,所以表面积S=×4×3+×4×2+××+×××=10+(cm2).2.答案为:D解析:由几何体的结构特征和正视图、俯视图,得该几何体的侧视图是一个直角三角形,其中一直角边为CD,其长度为2,另一直角边为底面三角形ABC的边AB上的中线,其长度为,则其侧视图的面积为S=×2×=,故选D.3.答案为:D;解析:由三棱锥C-ABD的正视图、俯视图得三棱锥C-ABD的侧视图为直角边长是的等腰直角三角形,如图所示,所以三棱锥C-ABD的侧视图的面积为,故选D.4.答案为:D.解析:由三视图可知该几何体为一个半圆锥,其中圆锥的底面半圆的半径为1,母线长为2,所以圆锥的高为,所以该几何体的体积V=×π×12× =π,故选D.5.答案为:A解析:由三视图知,该几何体由一个正方体的部分与一个圆柱的部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×(2+2+π)=72+6π.故选A.6.答案为:C;解析:设点A1到截面AB1D1的距离是h,由VA1AB1D1=VAA1B1D1,可得S△AB1D1·h=S△A1B1D1·AA1,即××2×2×4=×h,解得h=.7.答案为:A.解析:由三视图可知,该几何体是由一个正四棱柱挖掉一个半圆锥所得到的几何体,其直观图如图所示,其中正四棱柱的底面正方形的边长a=2,半圆锥的底面半径r=1,高h=3,所以正四棱柱的体积V1=a2h=22×3=12,半圆锥的体积V2=×r2h=×12×3=,所以该几何体的体积V=V1-V2=12-.]8.答案为:A;解析:该旋转体是大球体中挖掉一个小球体,该旋转体体积为V=×53-×43=.9.答案为:D解析:由题图可知该几何体是一个底面圆的半径为1,高为1的半圆锥,故所求体积V=×π×12×1=.故选答案为:D.10.答案为:A;解析:依题意得,AB=2AD=2,∠DAB=,由余弦定理可得BD=,则AD2+DB2=AB2,则∠ADB=,又四边形ABCD是等腰梯形,故四边形ABCD的外接圆直径为AB,设AB的中点为O1,球的半径为R,因为SD⊥平面ABCD,所以R2=12+=,则S=4πR2=5π,故选A.11.【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一个侧面与底面垂直,底面为边长为4的正方形如图:其中PAD⊥平面ABCD,底面ABCD为正方形,PE⊥AD,DE=1,AE=3,PE=4,PE⊥底面ABCD,连接CE,BE,在直角三角形PBE中,PB===;在直角三角形PCE中,可得PC===;又PA===5;PD===.几何体最长棱的棱长为.故选:C.12.答案为:B解析:设正方体的棱长为a,依题意得,×=,解得a=1.由三视图可知,该几何体的直观图有以下两种可能,图1对应的几何体的表面积为+,图2对应的几何体的表面积为3+.故选B.二 、填空题13.答案为:.解析:取PD的中点E,连接AE,NE,则在四棱锥PABCD中,底面ABCD是矩形,M,N分别为AB,PC的中点,所以NE∥AM,NE=AM,所以四边形AENM是平行四边形,所以AE∥MN,所以点A到平面PMN的距离等于点E到平面PMN的距离,设为h,在△PMN中,PN=,PM=2,MN=,所以S△PMN=×2×=,由VEPMN=VMPEN,可得×h=××1×2×2,所以h=.14.答案为:4π cm3解析:依题意得,零件可视为从一个半球中挖去一个小圆锥所剩余的几何体,其体积为××23-×π×22×1=4π(cm3).15.答案为:.解析:如图,作出三棱锥A-BCD的外接球,设球的半径为r,球心O到底面BCD的距离为d,DE的中点为F,连接AF,过球心O作AF的垂线OH,垂足为H,连接OA,OD,OE,AE.因为BD=,CD=,BC=2,所以BD⊥CD,则OE⊥平面BCD,OE∥AF,所以HF=OE=d.所以在Rt△BCD中,DE=1,EF=.又AB=AC=BC=2,所以AE=,所以在Rt△AFE中,AF=,所以r2=d2+1=( -d)2+,解得r2=,所以三棱锥A-BCD的外接球的表面积S=4πr2=.16.答案为:解析:如图所示,取CD的中点,连接,,并连接BD交于,连接SH.因为,,所以四边形和四边形均为平行四边形,所以,故,所以为外接圆的圆心且,则,,,因为,所以,所以.因为,,所以,所以,因为,所以平面设三棱锥外接球的球心为,连接,,,则平面,则.过点作于点,则,故四边形为矩形,故,.设,外接球的半径为,则,又,则,解得,所以,所以三棱锥外接球的表面积为.
相关试卷
这是一份2023年高考数学(理数)一轮复习课时35《空间几何体的结构及其三视图和直观图》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时35《空间几何体的结构及其三视图和直观图》达标练习含详解doc、2023年高考数学理数一轮复习课时35《空间几何体的结构及其三视图和直观图》达标练习教师版doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
这是一份2023年高考数学(文数)一轮复习课时36《由三视图求几何体面积、体积》达标练习(2份,答案版+教师版),文件包含2023年高考数学文数一轮复习课时36《由三视图求几何体面积体积》达标练习含详解doc、2023年高考数学文数一轮复习课时36《由三视图求几何体面积体积》达标练习教师版doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份高考数学(理数)一轮复习:课时达标检测34《空间几何体的三视图、直观图、表面积与体积》(学生版),共4页。