所属成套资源:2023年高考数学(文数)一轮复习创新思维课时练(教师版+原卷版)
2023年高考数学(文数)一轮复习创新思维课时练8.6《双曲线》(2份,教师版+原卷版)
展开
这是一份2023年高考数学(文数)一轮复习创新思维课时练8.6《双曲线》(2份,教师版+原卷版),文件包含2023年高考数学文数一轮复习创新思维课时练86《双曲线》教师版doc、2023年高考数学文数一轮复习创新思维课时练86《双曲线》原卷版doc等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
2023年高考数学(文数)一轮复习创新思维课时练8.6《双曲线》一 、选择题1.双曲线-=1的渐近线方程是( )A.y=±x B.y=±x C.y=±x D.y=±x【答案解析】答案为:C解析:双曲线-=1中a=3,b=2,双曲线的渐近线方程为y=±x.2.已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )A. B.3 C.m D.3m【答案解析】答案为:A解析:双曲线方程为-=1,焦点F到一条渐近线的距离为.故选A.3.已知双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为( )A.-=1 B.-=1 C.-=1 D.-=1【答案解析】答案为:B解析:根据双曲线C的渐近线方程为y=x,可知= ①,又椭圆+=1的焦点坐标为(3,0)和(-3,0),所以a2+b2=9 ②,根据①②可知a2=4, b2=5,所以选B.4.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )A. B.2 C.4 D.8【答案解析】答案为:C解析:抛物线y2=16x的准线方程是x=-4,所以点A(-4,2)在等轴双曲线C:x2-y2=a2(a>0)上,将点A的坐标代入得a=2,所以C的实轴长为4.5.若双曲线M:-=1(a>0,b>0)的左、右焦点分别是F1,F2,P为双曲线M上一点,且|PF1|=15,|PF2|=7,|F1F2|=10,则双曲线M的离心率为( )A.3 B.2 C. D.【答案解析】答案为:D解析:P为双曲线M上一点,且|PF1|=15,|PF2|=7,|F1F2|=10,由双曲线的定义可得|PF1|-|PF2|=2a=8,|F1F2|=2c=10,则双曲线的离心率为:e==.6.设F为双曲线C:-=1(a>0,b>0)的右焦点,过坐标原点的直线依次与双曲线C的左、右支交于点P,Q,若|PQ|=2|QF|,∠PQF=60°,则该双曲线的离心率为( )A. B.1+ C.2+ D.4+2【答案解析】答案为:B解析:∠PQF=60°,因为|PQ|=2|QF|,所以∠PFQ=90°,设双曲线的左焦点为F1,连接F1P,F1Q,由对称性可知,四边形F1PFQ为矩形,且|F1F|=2|QF|,|QF1|=|QF|,故e====+1.7.若a>1,则双曲线-y2=1的离心率的取值范围是( )A.(,+∞) B.(,2) C.(1,) D.(1,2)【答案解析】答案为:C解析:依题意得,双曲线的离心率e= ,因为a>1,所以e∈(1,),故选C.8.已知双曲线-=1与直线y=2x有交点,则双曲线离心率的取值范围为( )A.(1,) B.(1,] C.(,+∞) D.[,+∞)【答案解析】答案为:C解析:∵双曲线的一条渐近线方程为y=x,则由题意得>2,∴e=>=.9.已知双曲线C:-=1(a>0,b>0)过点(,),以实轴的两个端点与虚轴的一个端点为顶点组成一个等边三角形,则双曲线C的标准方程是( )A.-y2=1 B.x2-=1 C.-=1 D.-=1【答案解析】答案为:B;解析:由题意得,=tan 60°=,因为双曲线C过点(,),所以-=1,联立,得解得所以双曲线C的标准方程是x2-=1.故选B.10.已知双曲线Γ:-=1(a>b>0)的顶点到渐近线的距离为,且其一个焦点坐标为(5,0),则双曲线Γ的方程为( )A.-=1 B.-=1 C.-=1 D.-=1【答案解析】答案为:A;解析:双曲线的一条渐近线方程为bx-ay=0,一个顶点坐标为(a,0),由题有=,而c2=a2+b2且c=5,于是ab=12,联立,得且注意到a>b>0,解得所以双曲线Γ的方程为-=1.11.设F1,F2分别是双曲线-=1的左、右焦点,若双曲线上存在点A,使∠F1AF2=90°且|AF1|=3|AF2|,则双曲线的离心率为( )A. B. C. D.【答案解析】答案为:B解析:因为∠F1AF2=90°,故|AF1|2+|AF2|2=|F1F2|2=4c2,又|AF1|=3|AF2|,且|AF1|-|AF2|=2a,所以|AF1|=3a,|AF2|=a,则10a2=4c2,即=,故e==(负值舍去).12.已知M,N是双曲线-y2=1上关于坐标原点O对称的点,P为双曲线上异于M,N的点,若直线PM的斜率的取值范围是[,2],则直线PN的斜率的取值范围是( )A.[,] B.[- ,- ] C.(,) D.[- ,- ]∪[,]【答案解析】答案为:A;解析:设M(x0,y0),N(-x0,-y0),P(m,n)(m≠±x0,n≠±y0),则kPM=,kPN=.又P,M,N均在双曲线-y2=1上,则-n2=1,-y=1,两式相减得-(n-y0)(n+y0)=0,·=,即kPM·kPN=,又≤kPM≤2,即≤≤2,解得≤kPN≤.故选A.二 、填空题13.双曲线Γ:-=1(a>0,b>0)的焦距为10,焦点到渐近线的距离为3,则Γ的实轴长等于________.【答案解析】答案为:8解析:双曲线的焦点(0,5)到渐近线y=x,即ax-by=0的距离为==b=3,所以a=4,2a=8.14.F1(-4,0),F2(4,0)是双曲线C:-=1(m>0)的两个焦点,点M是双曲线C上一点,且∠F1MF2=60°,则△F1MF2的面积为________.【答案解析】答案为:4解析:因为F1(-4,0),F2(4,0)是双曲线C:-=1(m>0)的两个焦点,所以m+4=16,所以m=12,设|MF1|=m′,|MF2|=n,因为点M是双曲线上一点,且∠F1MF2=60°,所以|m′-n|=4①,m′2+n2-2m′ncos 60°=64②,由②-①2得m′n=16,所以△F1MF2的面积S= m′n sin 60°=4.15.已知双曲线E:-=1,直线l交双曲线于A,B两点,若线段AB的中点坐标为(,-1),则l的方程为________.【答案解析】答案为:2x+8y+7=0解析:依题意,设点A(x1,y1),B(x2,y2),则有,两式相减得=,即=×.又线段AB的中点坐标是(,-1),因此x1+x2=2×=1,y1+y2=(-1)×2=-2,=-,=-,即直线AB的斜率为-,直线l的方程为y+1=-(x- ),即2x+8y+7=0.16.已知P是双曲线-=1右支上一点,F1,F2分别为左、右焦点,且焦距为2c,则△PF1F2的内切圆圆心的横坐标是________.【答案解析】答案为:a.解析:如图所示,内切圆圆心M到各边的距离分别为|MA|,|MB|,|MC|,切点分别为A,B,C,由三角形的内切圆的性质则有:|CF1|=|AF1|,|AF2|=|BF2|,|PC|=|PB|,所以|PF1|-|PF2|=|CF1|-|BF2|=|AF1|-|AF2|=2a,又|AF1|+|AF2|=2c,所以|AF1|=a+c,则|OA|=|AF1|-|OF1|=a.因为M的横坐标和A的横坐标相同,所以M的横坐标为a.
相关试卷
这是一份2023年高考数学(文数)一轮复习创新思维课时练1.1《集合》(2份,教师版+原卷版),文件包含2023年高考数学文数一轮复习创新思维课时练11《集合》原卷版doc、2023年高考数学文数一轮复习创新思维课时练11《集合》教师版doc等2份试卷配套教学资源,其中试卷共4页, 欢迎下载使用。
这是一份2023年高考数学(文数)一轮复习创新思维课时练5.4《数列求和》(2份,教师版+原卷版),文件包含2023年高考数学文数一轮复习创新思维课时练54《数列求和》教师版doc、2023年高考数学文数一轮复习创新思维课时练54《数列求和》原卷版doc等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
这是一份2023年高考数学(文数)一轮复习创新思维课时练8.5《椭 圆》(2份,教师版+原卷版),文件包含2023年高考数学文数一轮复习创新思维课时练85《椭圆》教师版doc、2023年高考数学文数一轮复习创新思维课时练85《椭圆》原卷版doc等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。