所属成套资源:2022年(通用版)中考数学二轮复习核心专题复习攻略(原卷版+解析版)
2022年(通用版)中考数学二轮复习核心专题复习攻略:专题10 锐角三角函数及其运用(原卷+解析版)
展开
这是一份2022年(通用版)中考数学二轮复习核心专题复习攻略:专题10 锐角三角函数及其运用(原卷+解析版),文件包含专题10锐角三角函数及其运用讲+练-2022年中考数学二轮复习核心专题复习攻略解析版doc、专题10锐角三角函数及其运用讲+练-2022年中考数学二轮复习核心专题复习攻略原卷版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
专题10 锐角三角函数及其运用复习考点攻略考点一 锐角三角函数锐角三角函数的定义:在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,正弦:sinA=;余弦:cosA=;正切:tanA=.【注意】根据定义求三角函数值时,一定要根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.【例1】如图,在△ABC中,∠C=90°.若AB=3,BC=2,则sinA的值为( )A. B. C. D. 考点二 特殊角的三角函数值αsinαtanα30°45°160°【例2】的值为( )A. B. C. D.1考点三 解直角三角形1.在直角三角形中,求直角三角形所有未知元素的过程叫做解直角三角形.2.解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:(1)三边关系:a2+b2=c2;(2)两锐角关系:∠A+∠B=90°;(3)边与角关系:sinA=cosB=,cosA=sinB=,tanA=;(4)sin2A+cos2A=1.3.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.【例3】如图,我市在建高铁的某段路基横断面为梯形,∥,长为6米,坡角为45°,的坡角为30°,则的长为 ________ 米 (结果保留根号) 【例4】如图,大海中有和两个岛屿,为测量它们之间的距离,在海岸线上点处测得,;在点处测得,,.⑴ 判断、的数量关系,并说明理由⑵ 求两个岛屿和之间的距离(结果精确到).(参考数据:,,,,,) 考点四 锐角三角函数的应用1.仰角和俯角:仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角.2.坡度和坡角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=.坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα.坡度越大,α角越大,坡面越陡.3.方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角. 4.解直角三角形中“双直角三角形”的基本模型: 5.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.6.解直角三角形应用题应注意的问题:(1) 分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. 【例5】如图,一名滑雪爱好者先从山脚下A处沿登山步道走到点B处,再沿索道乘坐缆车到达顶部C.已知在点A处观测点C,得仰角为35°,且A,B的水平距离AE=1000米,索道BC的坡度i=1:1,长度为2600米,求山的高度(即点C到AE的距离)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,结果保留整数) 【例6】如图,一艘海轮位于灯塔P的南偏东30°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B处.(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔150海里的点O处.圆形暗礁区域的半径为60海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险?如果海伦从B处继续向正北方向航行,是否有触礁的危险?并说明理由.(参考数据:≈1.414,≈1.732)第一部分 选择题一、选择题(本题有10小题,每题3分,共30分)1. 比萨斜塔是意大利的著名建筑,其示意图如图所示.设塔顶中心点为点,塔身中心线与垂直中心线的夹角为,过点向垂直中心线引垂线,垂足为点.通过测量可得、、的长度,利用测量所得的数据计算的三角函数值,进而可求的大小.下列关系式正确的是( ) A. B. C. D.如图,在中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则( ) A.c=bsinB B.b=csinB C.a=btanB D.b=ctanB已知α是锐角,sinα=cos60°,则α等于( )A.30° B.45° C.60° D.不能确定若∠A是锐角,且sinA= ,则( ) A. 0°<∠A<30° B. 30°<∠A<45° C. 45°<∠A<60° D. 60°<∠A<90°点(-sin60°,cos60°)关于y轴对称的点的坐标是( ) A. ( , ) B. (- , ) C. (- ,- ) D. (- ,- )在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是( )A. B. C. D.如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为( )A.米 B.4sinα米 C.米 D.4cosα米 菱形ABCD的对角线AC=10cm,BD=6cm,那么tan为( )A. B. C. D.如图,AB是圆锥的母线,BC为底面直径,已知BC=6 cm,圆锥的侧面积为15π cm2 , 则sin∠ABC的值为 ( ) B. C. D. 如图,四边形是一张平行四边形纸片,其高,底边,,沿虚线将纸片剪成两个全等的梯形,若,则的长为( ) A. B. C. D.第二部分 填空题二、填空题(本题有6小题,每题4分,共24分)11..若tan(α–15°)= ,则锐角α的度数是________. 12.如图,在Rt△ABC中,∠C=90°,BC=12,tanA=,则sinB=___________.如图,A,B,C是上的三点,若是等边三角形,则___________. 如图是某商场营业大厅自动扶梯示意图.自动扶梯的倾斜角为,在自动扶梯下方地面处测得扶梯顶端的仰角为,、之间的距离为4. 则自动扶梯的垂直高度=_________.(结果保留根号)如图所示,在四边形中,,,.连接,,若,则长度是_________.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.,斜坡长,斜坡的坡比为12∶5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿至少向右移________时,才能确保山体不滑坡.(取)第三部分 解答题二、解答题(本题有7小题,共46分)17. 如图,在中,的平分线交于点.求的长? 18. 已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=8,tan∠CBD=.(1)求边AB的长;(2)求cos∠BAE的值. 如图,小明利用学到的数学知识测量大桥主架在水面以上的高度,在观测点处测得大桥主架顶端的仰角为30°,测得大桥主架与水面交汇点的俯角为14°,观测点与大桥主架的水平距离为60米,且垂直于桥面.(点在同一平面内) (1)求大桥主架在桥面以上的高度;(结果保留根号)(2)求大桥主架在水面以上的高度.(结果精确到1米)(参考数据) 如图,某船向正东航行,在A处望见海岛C在北偏东60°,前进6海里到B点,此时测得海岛C在北偏东45°,已知在该岛周围6海里内有暗礁,问船继续向正东航行,有触礁的危险吗?
如图,直升飞机在隧道BD上方A点处测得B、D两点的俯角分别为45°和31°.若飞机此时飞行高度AC为1208m,且点C、B、D在同一条直线上,求隧道BD的长.(精确到1m)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60) 如图,在某建筑物AC上,挂着“缘分‘天柱’定,悠然在潜山”的宣传条幅BC,小明站在点F处,看条幅顶端B,测得仰角为30°,再往条幅方向前行30米到达点E处,看到条幅顶端B,测得仰角为60°,求宣传条幅BC的长.(注:不计小明的身高,结果精确到1米,参考数据≈1.4,≈1.7) 数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)
相关试卷
这是一份初中数学中考复习 专题10 锐角三角函数及其运用(讲+练)-2022年中考数学二轮复习核心专题复习攻略(解析版),共22页。
这是一份2022年(通用版)中考数学二轮复习核心专题复习攻略:专题16 概率(原卷+解析版),文件包含专题16概率讲+练-2022年中考数学二轮复习核心专题复习攻略解析版doc、专题16概率讲+练-2022年中考数学二轮复习核心专题复习攻略原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份2022年(通用版)中考数学二轮复习核心专题复习攻略:专题15 统计(原卷+解析版),文件包含专题15统计讲+练-2022年中考数学二轮复习核心专题复习攻略解析版doc、专题15统计讲+练-2022年中考数学二轮复习核心专题复习攻略原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。