所属成套资源:2022年(通用版)中考数学二轮复习核心专题复习攻略(原卷版+解析版)
2022年(通用版)中考数学二轮复习核心专题复习攻略:专题07 反比例函数及其运用 (原卷+解析版)
展开这是一份2022年(通用版)中考数学二轮复习核心专题复习攻略:专题07 反比例函数及其运用 (原卷+解析版),文件包含专题07反比例函数及其运用讲+练-2022年中考数学二轮复习核心专题复习攻略解析版doc、专题07反比例函数及其运用讲+练-2022年中考数学二轮复习核心专题复习攻略原卷版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
专题07 反比例函数及其运用复习考点攻略
考点一 反比例函数的概念
1.反比例函数的概念:一般地,函数(k是常数,k≠0)叫做反比例函数.反比例函数的解析式也可以写成的形式.自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数.
2.反比例函数(k是常数,k0)中x,y的取值范围:反比例函数(k是常数,k≠0)的自变量x的取值范围是不等于0的任意实数,函数值y的取值范围也是非零实数.
【例1】下列函数中,y与x之间是反比例函数关系的是
A.xy= B.3x+2y=0
C.y= D.y=
考点二 反比例函数的图象和性质
1.反比例函数的图象与性质
(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.
(2)性质:当k>0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小.
当k<0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大.
表达式 | (k是常数,k≠0) | |
k | k>0 | k<0 |
大致图象 | ||
所在象限 | 第一、三象限 | 第二、四象限 |
增减性 | 在每个象限内,y随x的增大而减小 | 在每个象限内,y随x的增大而增大 |
2.反比例函数图象的对称性
反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.
【注意】
(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.
(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数中x≠0且y≠0.
(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.
【例2】一次函数与反比例函数在同一坐标系中的图象可能是( )
A. B.
B.C. D.
【例3】若点,在反比例函数的图象上,且,则的取值范围是( )
A. B. C. D.或
考点三 反比例函数解析式的确定
1.待定系数法:确定解析式的方法仍是待定系数法,由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.
2.待定系数法求反比例函数解析式的一般步骤
(1)设反比例函数解析式为(k≠0);
(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;
(3)解这个方程求出待定系数k;
(4)将所求得的待定系数k的值代回所设的函数解析式.
【例4】点A为反比例函数图象上一点,它到原点的距离为5,到x轴的距离为3,若点A在第二象限内,则这个函数的解析式为( )
A.y= B.y=-
C.y= D.y=-
考点四 反比例函数中|k|的几何意义
1.反比例函数图象中有关图形的面积
2.涉及三角形的面积型
当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.
(1)正比例函数与一次函数所围成的三角形面积.如图①,S△ABC=2S△ACO=|k|;
(2)如图②,已知一次函数与反比例函数交于A、B两点,且一次函数与x轴交于点C,则S△AOB=S△AOC+S△BOC=+=;
(3)如图③,已知反比例函数的图象上的两点,其坐标分别为,,C为AB延长线与x轴的交点,则S△AOB=S△AOC–S△BOC=–=.
【例5】如图,已知双曲线经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若
△OBC的面积为9,则k=__________.
【例6】如图,A、B两点在双曲线的图象上,分别经过A、B两点向轴作垂线段,已知,则
A.8 B.6
C.5 D.4
考点五 反比例函数与一次函数的综合
1.涉及自变量取值范围型
当一次函数与反比例函数相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对时自变量x的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x的范围.例如,如下图,当时,x的取值范围为或;同理,当时,x的取值范围为或.
2.求一次函数与反比例函数的交点坐标
(1)从几何角度看,一次函数与反比例函数的交点由k值的符号来决定.
①k值同号,两个函数必有两个交点;
②k值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;
(2)从代数角度看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.
【例7】已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是( )
A. B. C. D.
考点六 反比例函数的实际应用
解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.
【例8】如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点若,则k的值为______.
【例9】如图,一次函数与反比例函数其中图象交于,两点.
求一次函数和反比例函数的表达式;
求的面积;
请直接写出当一次函数值大于反比例函数值时x的取值范围.
|
第一部分 选择题
一、选择题(本题有10小题,每题4分,共40分)
1.下列函数:①;②;③;④中,是反比例函数的有( )
A.1个 B.2个
C.3个 D.4个
2.点A为反比例函数图象上一点,它到原点的距离为5,则x轴的距离为3,若点A在第二象限内,则这个函数的解析式为( )
A.y= B.y=-
C.y= D.y=-
3. 已知点A(1,m),B(2,n)在反比例函数的图象上,则( )
A. B.
C. D.
- 如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是( )
A.一直不变 B.先增大后减小
C.先减小后增大 D.先增大后不变
5.如图,点,点都在反比例函数的图象上,过点分别向轴、轴作垂线,垂足分别为点,.连接,,.若四边形的面积记作,的面积记作,则( )
A. B. C. D.
6. 已知一次函数y1=kx+b与反比例函数y2=在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是( )
A.x<-1或0<x<3 B.-1<x<0或x>3
C.-1<x<0 D.x>3
7.如图,在平面直角坐标系中,函数与的图象相交于点,则不等式的解集为( )
A. 或
C. 或
- 如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1-k2的值为( )
A.2 B.3
C.4 D.-4
- 一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是( )
A. B.
C. D.
- 如图,一次函数与x轴,y轴的交点分别是,与反比例函数的图象交于点Q,反比例函数图象上有一点P满足:轴;为坐标原点,则四边形PAQO的面积为
A. 7 B. 10 C. D.
第二部分 填空题
二、填空题(本题有6小题,每题4分,共24分)
11.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________.
12.如图,直线y=x与双曲线的一个交点为A,且OA=2,则k的值为__________.
- 已知、在同一个反比例函数图像上,则__________.
14.平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为__________.
15.如图,点A是反比例函数图象上的一点,过点A作轴,垂足为点C,D为AC的中点,若的面积为1,则k的值是
- 如图,反比例函数的图象与直线相交于点A,与直线相交于点B,若的面积为18,则k的值为______.
第三部分 解答题
三、解答题(本题有6小题,共56分)
17. 如图,已知A(–4,n),B(2,–4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积.
18.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).
(1)试确定这两个函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.
19.如图,一次函数的图象与反比例函数(为常数且)的图象相交于,两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求的值.
20.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.
(1)求一次函数与反比例函数的解析式;
(2)记两函数图象的另一个交点为E,求△CDE的面积;
(3)直接写出不等式kx+b≤的解集.
21.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(–1,4),点B的坐标为(4,n).
(1)根据图象,直接写出满足k1x+b>的x的取值范围;
(2)求这两个函数的表达式;
(3)点P在线段AB上,且S△AOP∶S△BOP=1∶2,求点P的坐标.
22.如图,反比例函数和一次函数相交于点,.
(1)求一次函数和反比例函数解析式;
(2)连接OA,试问在x轴上是否存在点P,使得为以OA为腰的等腰三角形,若存在,直接写出满足题意的点P的坐标;若不存在,说明理由.
相关试卷
这是一份2022年(通用版)中考数学二轮复习核心专题复习攻略:专题16 概率(原卷+解析版),文件包含专题16概率讲+练-2022年中考数学二轮复习核心专题复习攻略解析版doc、专题16概率讲+练-2022年中考数学二轮复习核心专题复习攻略原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份2022年(通用版)中考数学二轮复习核心专题复习攻略:专题15 统计(原卷+解析版),文件包含专题15统计讲+练-2022年中考数学二轮复习核心专题复习攻略解析版doc、专题15统计讲+练-2022年中考数学二轮复习核心专题复习攻略原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份2022年(通用版)中考数学二轮复习核心专题复习攻略:专题13 圆 (原卷+解析版),文件包含专题13圆讲+练-2022年中考数学二轮复习核心专题复习攻略解析版doc、专题13圆讲+练-2022年中考数学二轮复习核心专题复习攻略原卷版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。