终身会员
搜索
    上传资料 赚现金

    2022年陕西省西安市雁塔区中考数学模试卷含解析

    立即下载
    加入资料篮
    2022年陕西省西安市雁塔区中考数学模试卷含解析第1页
    2022年陕西省西安市雁塔区中考数学模试卷含解析第2页
    2022年陕西省西安市雁塔区中考数学模试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年陕西省西安市雁塔区中考数学模试卷含解析

    展开

    这是一份2022年陕西省西安市雁塔区中考数学模试卷含解析,共22页。试卷主要包含了下列计算正确的是,如图,空心圆柱体的左视图是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得(  )
    A.
    B.
    C.
    D.
    2.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为(  )

    A. B. C. D.
    3.实数的倒数是( )
    A. B. C. D.
    4.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是(  )

    A. B. C. D.
    5.根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为( )
    A.0.6×1010 B.0.6×1011 C.6×1010 D.6×1011
    6.下列计算正确的是( )
    A.a²+a²=a4 B.(-a2)3=a6
    C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b
    7.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()

    A.37 B.38 C.50 D.51
    8.如图,空心圆柱体的左视图是( )

    A. B. C. D.
    9.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是(  )

    A.一次性购买数量不超过10本时,销售价格为20元/本
    B.a=520
    C.一次性购买10本以上时,超过10本的那部分书的价格打八折
    D.一次性购买20本比分两次购买且每次购买10本少花80元
    10.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )

    A.∠ABD=∠C B.∠ADB=∠ABC C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.函数的自变量的取值范围是.
    12.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为_____.
    13.的系数是_____,次数是_____.
    14.计算的结果是____.
    15.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= _______.

    16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.
    三、解答题(共8题,共72分)
    17.(8分)先化简,再求值:()÷,其中a=+1.
    18.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.
    (1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;
    (2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.

    19.(8分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

    20.(8分)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.
    (1)如图2,当AB⊥OM时,求证:AM=AC;
    (2)求y关于x的函数关系式,并写出定义域;
    (3)当△OAC为等腰三角形时,求x的值.

    21.(8分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是  (填方案一,方案二,或方案三),则B点坐标是   ,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.

    22.(10分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.
    (1)写出抛物线的函数表达式;
    (2)判断△ABC的形状,并证明你的结论;
    (3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由.

    23.(12分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率.
    24.如图,在梯形中,,,,,点为边上一动点,作⊥,垂足在边上,以点为圆心,为半径画圆,交射线于点.
    (1)当圆过点时,求圆的半径;
    (2)分别联结和,当时,以点为圆心,为半径的圆与圆相交,试求圆的半径的取值范围;
    (3)将劣弧沿直线翻折交于点,试通过计算说明线段和的比值为定值,并求出次定值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
    【详解】
    设每枚黄金重x两,每枚白银重y两,
    由题意得:,
    故选:D.
    【点睛】
    此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
    2、C
    【解析】
    由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.
    【详解】
    第(1)个图形中面积为1的正方形有2个,
    第(2)个图形中面积为1的图象有2+3=5个,
    第(3)个图形中面积为1的正方形有2+3+4=9个,
    …,
    按此规律,
    第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个.
    【点睛】
    本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.
    3、D
    【解析】
    因为=,
    所以的倒数是.
    故选D.
    4、C
    【解析】
    严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
    【详解】
    根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
    故选C.
    【点睛】
    本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
    5、C
    【解析】
    解:将60000000000用科学记数法表示为:6×1.
    故选C.
    【点睛】
    本题考查科学记数法—表示较大的数,掌握科学计数法的一般形式是解题关键.
    6、D
    【解析】
    各项计算得到结果,即可作出判断.
    【详解】
    A、原式=2a2,不符合题意;
    B、原式=-a6,不符合题意;
    C、原式=a2+2ab+b2,不符合题意;
    D、原式=-4b,符合题意,
    故选:D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    7、D
    【解析】
    试题解析:
    第①个图形中有 盆鲜花,
    第②个图形中有盆鲜花,
    第③个图形中有盆鲜花,

    第n个图形中的鲜花盆数为
    则第⑥个图形中的鲜花盆数为
    故选C.
    8、C
    【解析】
    根据从左边看得到的图形是左视图,可得答案.
    【详解】
    从左边看是三个矩形,中间矩形的左右两边是虚线,
    故选C.
    【点睛】
    本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
    9、D
    【解析】
    A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
    【详解】
    解:A、∵200÷10=20(元/本),
    ∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
    C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
    ∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
    B、∵200+16×(30﹣10)=520(元),
    ∴a=520,B选项正确;
    D、∵200×2﹣200﹣16×(20﹣10)=40(元),
    ∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
    故选D.
    【点睛】
    考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
    10、C
    【解析】
    由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
    【详解】
    ∵∠A是公共角,
    ∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
    当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
    AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
    故选C.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、x≠1
    【解析】
    该题考查分式方程的有关概念
    根据分式的分母不为0可得
    X-1≠0,即x≠1
    那么函数y=的自变量的取值范围是x≠1
    12、 (x﹣1)(x﹣2)
    【解析】
    根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.
    【详解】
    解:已知方程的两根为:x1=1,x2=2,可得:
    (x﹣1)(x﹣2)=0,
    ∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).
    【点睛】
    一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)
    13、 1
    【解析】
    根据单项式系数及次数的定义进行解答即可.
    【详解】
    根据单项式系数和次数的定义可知,﹣的系数是,次数是1.
    【点睛】
    本题考查了单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.
    14、
    【解析】
    原式= ,
    故答案为.
    15、1.5
    【解析】
    在Rt△ABC中,,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得.
    16、8
    【解析】
    试题分析:设红球有x个,根据概率公式可得,解得:x=8.
    考点:概率.

    三、解答题(共8题,共72分)
    17、,.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.
    【详解】
    解: ()÷
    =
    =
    =
    =,
    当a=+1时,原式==.
    【点睛】
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    18、(1) (2)证明见解析
    【解析】
    (1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
    (2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.
    【详解】
    解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.
    在 Rt△ABE 中,∵OB=OE,
    ∴BE=2OA=2,
    ∵MB=ME,
    ∴∠MBE=∠MEB=15°,
    ∴∠AME=∠MBE+∠MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,
    ∵AB2+AE2=BE2,
    ∴,
    ∴x= (负根已经舍弃),
    ∴AB=AC=(2+ )• ,
    ∴BC= AB= +1.
    作 CQ⊥AC,交 AF 的延长线于 Q,

    ∵ AD=AE ,AB=AC ,∠BAE=∠CAD,
    ∴△ABE≌△ACD(SAS),
    ∴∠ABE=∠ACD,
    ∵∠BAC=90°,FG⊥CD,
    ∴∠AEB=∠CMF,
    ∴∠GEM=∠GME,
    ∴EG=MG,
    ∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,
    ∴△ABE≌△CAQ(ASA),
    ∴BE=AQ,∠AEB=∠Q,
    ∴∠CMF=∠Q,
    ∵∠MCF=∠QCF=45°,CF=CF,
    ∴△CMF≌△CQF(AAS),
    ∴FM=FQ,
    ∴BE=AQ=AF+FQ=AF=FM,
    ∵EG=MG,
    ∴BG=BE+EG=AF+FM+MG=AF+FG.
    【点睛】
    本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    19、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
    【解析】
    (1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
    (2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
    【详解】
    解:证明:∵四边形是平行四边形,
    ∴,,.
    ∵点、分别是、的中点,
    ∴,.
    ∴.
    在和中,

    ∴.
    解:当四边形是菱形时,四边形是矩形.

    证明:∵四边形是平行四边形,
    ∴.
    ∵,
    ∴四边形是平行四边形.
    ∵四边形是菱形,
    ∴.
    ∵,
    ∴.
    ∴,.
    ∵,
    ∴.
    ∴.
    即.
    ∴四边形是矩形.
    【点睛】
    本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
    20、(1)证明见解析;(2) .();(3) .
    【解析】
    分析:(1)先判断出∠ABM=∠DOM,进而判断出△OAC≌△BAM,即可得出结论;
    (2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;
    (3)分三种情况利用勾股定理或判断出不存在,即可得出结论.
    详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.
    ∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.
    ∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,
    ∴AC=AM.
    (2)如图2,过点D作DE∥AB,交OM于点E.
    ∵OB=OM,OD⊥BM,∴BD=DM.
    ∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.
    ∵DE∥AB,∴,
    ∴.()
    (3)(i) 当OA=OC时.∵.在Rt△ODM中,.
    ∵.解得,或(舍).
    (ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.
    (ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.
    即:当△OAC为等腰三角形时,x的值为.

    点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.
    21、 (1) 方案1; B(5,0); ;(2) 3.2m.
    【解析】
    试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.
    (2)把x=3代入抛物线的解析式,即可得到结论.
    试题解析:解:方案1:(1)点B的坐标为(5,0),设抛物线的解析式为:.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:,∴抛物线的解析式为:;
    (2)由题意:把代入,解得:=3.2,∴水面上涨的高度为3.2m.
    方案2:(1)点B的坐标为(10,0).设抛物线的解析式为:.
    由题意可以得到抛物线的顶点为(5,5),代入解析式可得:,∴抛物线的解析式为:;
    (2)由题意:把代入解得:=3.2,∴水面上涨的高度为3.2m.
    方案3:(1)点B的坐标为(5, ),由题意可以得到抛物线的顶点为(0,0).
    设抛物线的解析式为:,把点B的坐标(5, ),代入解析式可得:,
    ∴抛物线的解析式为:;
    (2)由题意:把代入解得:=,∴水面上涨的高度为3.2m.
    22、(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).
    【解析】
    (1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;
    (2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8 ,BN=1,从而得到∠ABC=90°,所以△ABC为直角三角形;
    (3)利用勾股定理计算出AC=10 ,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=2 ,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI=×2=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣x+13,然后分别求出P、Q、G的坐标即可.
    【详解】
    解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),
    把A(8,9),B(0,1)代入y=x2+bx+c得,
    解得,
    ∴抛物线解析式为y=x2﹣7x+1;
    故答案为y=x2﹣7x+1;
    (2)△ABC为直角三角形.理由如下:
    当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),
    作AM⊥y轴于M,CN⊥y轴于N,如图,
    ∵B(0,1),A(8,9),C(1,﹣5),
    ∴BM=AM=8,BN=CN=1,
    ∴△ABM和△BNC都是等腰直角三角形,
    ∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,
    ∴∠ABC=90°,
    ∴△ABC为直角三角形;
    (3)∵AB=8,BN=1,
    ∴AC=10,
    ∴Rt△ABC的内切圆的半径=,
    设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,
    ∵I为△ABC的内心,
    ∴AI、BI为角平分线,
    ∴BI⊥y轴,
    而AI⊥PQ,
    ∴PQ为△ABC的外角平分线,
    易得y轴为△ABC的外角平分线,
    ∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,
    它们到直线AB、BC、AC距离相等,
    BI=×2=4,
    而BI⊥y轴,
    ∴I(4,1),
    设直线AI的解析式为y=kx+n,
    则,
    解得,
    ∴直线AI的解析式为y=2x﹣7,
    当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);
    设直线AP的解析式为y=﹣x+p,
    把A(8,9)代入得﹣4+n=9,解得n=13,
    ∴直线AP的解析式为y=﹣x+13,
    当y=1时,﹣x+13=1,则P(24,1)
    当x=0时,y=﹣x+13=13,则Q(0,13),
    综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).

    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.
    23、(1)详见解析;(2).
    【解析】
    试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
    (2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.
    试题解析:(1)如图:

    所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);
    (2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为.
    24、(1)x=1 (2) (1)
    【解析】
    (1)作AM⊥BC、连接AP,由等腰梯形性质知BM=4、AM=1,据此知tanB=tanC= ,从而可设PH=1k,则CH=4k、PC=5k,再表示出PA的长,根据PA=PH建立关于k的方程,解之可得;
    (2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9−8k,由△ABE∽△CEH得 ,据此求得k的值,从而得出圆P的半径,再根据两圆间的位置关系求解可得;
    (1)在圆P上取点F关于EH的对称点G,连接EG,作PQ⊥EG、HN⊥BC,先证△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC= 、cosC= ,据此得出NC= k、HN=k及PN=PC−NC=k,继而表示出EF、EH的长,从而出答案.
    【详解】
    (1)作AM⊥BC于点M,连接AP,如图1,

    ∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,
    ∴BM=4、AM=1,
    ∴tanB=tanC=,
    ∵PH⊥DC,
    ∴设PH=1k,则CH=4k、PC=5k,
    ∵BC=9,
    ∴PM=BC−BM−PC=5−5k,
    ∴AP=AM+PM=9+(5−5k) ,
    ∵PA=PH,
    ∴9+(5−5k) =9k,
    解得:k=1或k=,
    当k= 时,CP=5k= >9,舍去;
    ∴k=1,
    则圆P的半径为1.
    (2)如图2,

    由(1)知,PH=PE=1k、CH=4k、PC=5k,
    ∵BC=9,
    ∴BE=BC−PE−PC=9−8k,
    ∵△ABE∽△CEH,
    ∴ ,即 ,
    解得:k= ,
    则PH= ,即圆P的半径为,
    ∵圆B与圆P相交,且BE=9−8k= ,

    相关试卷

    2023年陕西省西安市雁塔区曲江二中中考数学六模试卷(含解析):

    这是一份2023年陕西省西安市雁塔区曲江二中中考数学六模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年陕西省西安市雁塔区高新重点中学中考数学七模试卷(含解析):

    这是一份2023年陕西省西安市雁塔区高新重点中学中考数学七模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年陕西省西安市雁塔区高新唐南中学中考数学五模试卷(含解析):

    这是一份2023年陕西省西安市雁塔区高新唐南中学中考数学五模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map