还剩3页未读,
继续阅读
所属成套资源:2022年中考数学三轮冲刺《方程实际问题》解答题冲刺练习(含答案)
成套系列资料,整套一键下载
2022年中考数学三轮冲刺《方程实际问题》解答题冲刺练习六(含答案)
展开这是一份2022年中考数学三轮冲刺《方程实际问题》解答题冲刺练习六(含答案),共5页。试卷主要包含了﹣3等内容,欢迎下载使用。
整理一批图书,如果一个人单独要花60小时,现先由一部分人用1小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?
有一列数,按一定规律排列成:1、﹣3、9、﹣27、81、﹣243,其中某三个相邻数的和是﹣1701,这三个数各是多少?
一个容器盛满纯药液63L,第一次倒出一部分纯药液后,用水加满,第二次又倒出同样多的药液,这时容器内剩下的纯药液是28L,问每次倒出的液体是多少?
一项绿化工程由甲、乙两工程队承担,已知乙工程队单独完成这项工程所需的天数是甲工程队单独完成所需天数的三分之二,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.
(1)求乙工程队单独完成这项工作需要多少天?
(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?
某日,王老师回泰兴老家看望父母,驾轿车从南京中山陵出发,上高速公路途经南京二桥和泰州大桥到泰兴市下高速,时间用了3小时;返回时平均速度提高了12千米/小时,比去时少用了半小时回到南京.
(1)求南京中山陵与泰兴市两地间的高速公路路程;
(2)两座桥的长度及过桥费见表格:
我省交通部门规定:轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括桥长),b(元)为过桥费.若王老师从南京中山陵到泰兴市所花的高速公路通行费为115.8元,求轿车的高速公路里程费a.
为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户月用水量在规定吨数以下的收费标准相同,超过规定吨数以上的部分收费标准相同,以下是小明家1~5月份用水量和交费情况:
根据表格中提供的信息,回答以下问题:
(1)求出规定吨数和两种收费标准.
(2)若小明家6月份用水20 t,则应缴多少元?
(3)若小明家7月份缴水费29元,则7月份用水多少吨?
某班去体育用品商店购买羽毛球和羽毛球拍,每只羽毛球2元,每副羽毛球拍25元.甲商店说:“羽毛球拍和羽毛球都打9折优惠”,乙商店说:“买一副羽毛球拍赠2只羽毛球”.
(1)该班如果买2副羽毛球拍和20只羽毛球,问在甲、乙两家商店各需花多少钱?
(2)该班如果准备花90元钱全部用于买2副羽毛球拍和若干只羽毛球,请问到哪家商店购买更合算?
(3)该班如果必须买2副羽毛球拍,问当买多少只羽毛球时到两家商店购买同样合算?
一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.
(1)若降价3元,则平均每天销售数量为 件;
(2)当每件商品降价多少元时,该商店每天销售利润为1200元?
\s 0 答案解析
设先安排整理的人员有x人,依题意得:解得:x=10.
答:先安排整理的人员有10人.
解:设这三个相邻数为 x,﹣3x,(﹣3)×(﹣3x)=9x,
根据题意得 x+(﹣3x)+9x=﹣1701,7x=﹣1701,x=﹣243,﹣3x=729 9x=﹣2187,
答:这三个数分别是﹣243,729,﹣2187.
解:设每次倒出的液体是xL
解得:(舍去) 答:每次倒出的液体是21L
解:
(1)设南京中山陵与泰兴市两地间的高速公路路程s千米.
由题意得,解得:s=180,
答:南京中山陵与泰兴市两地间的高速公路路程180千米;
(2)x=180-21-7=152,b=20+30=50,y=115.8代入y=ax+b+5得115.8=152a+50+5,解得a=0.4.
答:轿车的高速公路里程费为0.4元/千米.
解:
解:(1)甲商店:(25×2+2×20)×0.9=81(元);乙商店:25×2+2×(20﹣4)=82(元).
答:在甲商店需要花81元,在乙商店需要花82元.
(2)设在甲商店能买x只羽毛球,在乙商店能买y只羽毛球.
由题意,得:,解得:x=25,y=24,∵25>24,∴到甲商店购买更合算.
(3)设买m只羽毛球时到两家商店购买同样合算.
由题意,得:(25×2+2m)×0.9=25×2+2(m﹣4),解得m=15.
答:当买15只羽毛球时到两家商店购买同样合算.
解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.故答案为26;
(2)设每件商品应降价x元时,该商店每天销售利润为1200元.
根据题意,得 (40﹣x)(20+2x)=1200,
整理,得x2﹣30x+200=0,解得:x1=10,x2=20.
∵要求每件盈利不少于25元,∴x2=20应舍去,解得:x=10.
答:每件商品应降价10元时,该商店每天销售利润为1200元.
大桥名称
南京二桥
泰州大桥
大桥长度
21千米
7千米
过桥费
20元
30元
相关试卷
中考数学三轮冲刺《方程实际问题》解答题冲刺练习13(含答案):
这是一份中考数学三轮冲刺《方程实际问题》解答题冲刺练习13(含答案),共6页。试卷主要包含了5折优惠,1)=6,解得t=0,6千米,8=99等内容,欢迎下载使用。
中考数学三轮冲刺《方程实际问题》解答题冲刺练习11(含答案):
这是一份中考数学三轮冲刺《方程实际问题》解答题冲刺练习11(含答案),共5页。
中考数学三轮冲刺《方程实际问题》解答题冲刺练习10(含答案):
这是一份中考数学三轮冲刺《方程实际问题》解答题冲刺练习10(含答案),共5页。试卷主要包含了8克,求A4薄型纸每页的质量,2,等内容,欢迎下载使用。