人教A版(2019)必修二 高中数学 期中必考点06 简单几何体的表面积与体积(学生版+解析版)练习题
展开例题1给出下列命题:
①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;
②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;
③棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确命题的个数是( )
A.0 B.1
C.2 D.3
例题2 下列命题正确的是( )
A.两个面平行,其余各面都是梯形的多面体是棱台
B.两个面平行且相似,其余各面都是梯形的多面体是棱台
C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台
D.用平面截圆柱得到的截面只能是圆和矩形
【解题技巧提炼】
辨别空间几何体的2种方法
题型二 空间几何体的表面积
例题1在梯形ABCD中,∠ABC=eq \f(π,2),AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的表面积为( )
A.(5+eq \r(2))π B.(4+eq \r(2))π
C.(5+2eq \r(2))π D.(3+eq \r(2))π
例题2如图,在三棱柱ABCA1B1C1中,AA1⊥底面ABC,AB⊥BC,AA1=AC=2,直线A1C与侧面AA1B1B所成的角为30°,则该三棱柱的侧面积为( )
A.4+4eq \r(2) B.4+4eq \r(3)
C.12 D.8+4eq \r(2)
【解题技巧提炼】
求解几何体表面积的类型及求法
题型三 空间几何体的体积
例题1已知正三棱柱ABCA1B1C1的各棱长均为2,点D在棱AA1上,则三棱锥DBB1C1的体积为________.
例题2(1)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCDA1B1C1D1挖去四棱锥OEFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为________g.
(2)如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体例题3如图所示,已知三棱柱ABCA1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1ABC1的体积为( )
A.eq \f(\r(3),12) B.eq \f(\r(3),4)
C.eq \f(\r(6),12) D.eq \f(\r(6),4)
【解题技巧提炼】
求空间几何体的体积的常用方法
题型四 空间几何体的体积
例题1已知三棱锥PABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )
A.8eq \r(6)π B.4eq \r(6)π
C.2eq \r(6)π D.eq \r(6)π
例题2(1)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则eq \f(V1,V2)的值是________.
(2)已知正三棱锥的高为1,底面边长为2eq \r(3),内有一个球与四个面都相切,则棱锥的内切球的半径为________.
【解题技巧提炼】
[规律探求]
题型一 平面向量的有关概念
1.(多选)给出下列命题,其中真命题是( )
A.棱柱的侧棱都相等,侧面都是全等的平行四边形
B.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直
C.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱
D.存在每个面都是直角三角形的四面体
2.(一题两空)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图①).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图②是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.
题型二 向量的线性运算
1.在如图所示的斜截圆柱中,已知圆柱底面的直径为40 cm,母线长最短50 cm,最长80 cm,则斜截圆柱的侧面面积S=________cm2.
2.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为eq \f(7,8),SA与圆锥底面所成角为45°,若△SAB的面积为5eq \r(15),则该圆锥的侧面积为________.
题型三 向量共线定理及应用
1.如图,正四棱锥PABCD的底面边长为2eq \r(3) cm,侧面积为8eq \r(3) cm2,则它的体积为________cm3.
2.如图,已知体积为V的三棱柱ABCA1B1C1,P是棱B1B上除B1,B以外的任意一点,则四棱锥PAA1C1C的体积为________.
题型四 与球有关的切、接问题
1.如图,在矩形ABCD中,EF∥AD,GH∥BC,BC=2,AF=FG=BG=1.现分别沿EF,GH将矩形折叠使得AD与BC重合,则折叠后的几何体的外接球的表面积为( )
A.24π B.6π
C.eq \f(16,3)π D.eq \f(8,3)π
2.在四棱锥PABCD中,底面ABCD是边长为2a的正方形,PD⊥底面ABCD,且PD=2a.若在这个四棱锥内放一球,则此球的最大半径为________.
一、单选题
1.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )
A.B.
C.D.
2.已知四棱锥中,底面为边长为的正方形,侧面底面,且为等边三角形,则该四棱锥外接球的表面积为( )
A.B.C.D.
3.五脊殿是宋代传统建筑中的一种屋顶形式,如图所示.其屋顶上有一条正脊和四条垂脊,可近似看作一个底面为矩形的五面体.若某一五脊殿屋顶的正脊长4米,底面矩形的长为6米,宽为4米,正脊到底面矩形的距离为2米,则该五脊殿屋顶的体积的估计值为( )
A.B.C.32D.64
4.已知如左图棱长为的正方体,沿阴影面将它切割成两块,拼成如右图所示的几何体,那么拼成的几何体的全面积为( )
A.
B.
C.
D.
5.在《九章算术》中将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知四棱锥为阳马,底面ABCD是边长为2的正方形,有两条侧棱长为3,则该阳马的表面积为( )
A.B.
C.D.
6.在三棱锥中,是等腰直角三角形,,且平面,则三棱锥的外接球的表面积为( )
A.B.C.D.
7.如图,在四棱锥中,底面是边长为的正方形,,为的中点.过作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为,,则的最小值为( )
A.B.C.D.
8.如图,在直角梯形中,,,且.以所在直线为旋转轴,将梯形旋转一周围成的几何体体积为( )
A.B.C.D.
二、多选题
9.六氟化硫,化学式为,在常压下是十种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体结构(正八面体每个面都是正三角形,可以看作是将两个棱长均相等的正四棱锥将底面粘接在一起的几何体),如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点.若相邻两个氟原子间的距离为a(不计氟原子的大小),则( )
A.直线与为异面直线B.平面平面
C.平面平面D.八面体外接球表面积为
10.在三棱锥中,,,D,E,F分别为AB,AC,BC的中点,则以下结论正确的是( )
A.平面PDE⊥平面ABCB.平面PAF⊥平面ABC
C.AB//平面PFED.三棱锥P—ABC的外接球表面积为
三、填空题
11.在地球北纬圈上有、两点,它们的经度相差,、两地沿纬线圈的弧长与、两点的球面距离之比为________
12.如图,在三棱锥中,平面,,,,则三棱锥外接球的表面积为___________.
13.已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的体积为___
四、解答题
14.如图所示,正方体的棱长为,过顶点、、截下一个三棱锥.
(1)求剩余部分的体积;
(2)求三棱锥的高.
定义法
紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本要素,根据定义进行判定
反例法
通过反例对结构特征进行辨析,要说明一个结论是错误的,只需举出一个反例即可
求多面体的表面积
只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积
求旋转体的表面积
可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系
求不规则几何体的表面积时
通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积
公式法
对于规则几何体的体积问题,可以直接利用公式进行求解
割补法
把不规则的图形分割成规则的图形,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积
等体积法
一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积
看个性
考向(一)是几何体的外接球
一个多面体的顶点都在球面上即为球的外接问题,解决这类问题的关键是抓住外接球的特点,即球心到多面体的顶点的距离等于球的半径.
考向(二)是几何体的内切球
求解多面体的内切球问题,一般是将多面体分割为以内切球球心为顶点,多面体的各侧面为底面的棱锥,利用多面体的体积等于各分割棱锥的体积之和求内切球的半径
找共性
解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:
人教A版(2019)必修二 高中数学 期中必考点04 解三角形 (学生版+解析版)练习题: 这是一份人教A版(2019)必修二 高中数学 期中必考点04 解三角形 (学生版+解析版)练习题,文件包含人教A版2019必修二高中数学必考点04解三角形解析版docx、人教A版2019必修二高中数学必考点04解三角形原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
人教A版(2019)必修二 高中数学 期中必考点03 平面向量的应用(学生版+解析版)练习题: 这是一份人教A版(2019)必修二 高中数学 期中必考点03 平面向量的应用(学生版+解析版)练习题,文件包含人教A版2019必修二高中数学必考点03平面向量的应用解析版docx、人教A版2019必修二高中数学必考点03平面向量的应用原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
人教A版(2019)必修二 高中数学 期中必考点01 平面向量的概念及运算 (学生版+解析版)练习题: 这是一份人教A版(2019)必修二 高中数学 期中必考点01 平面向量的概念及运算 (学生版+解析版)练习题,文件包含人教A版2019必修二高中数学必考点01平面向量的概念及运算解析版docx、人教A版2019必修二高中数学必考点01平面向量的概念及运算原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。