年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    3.6 二次函数的实际应用-中考数学一轮复习 知识点+练习

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      3.6二次函数的实际应用-(原卷版).docx
    • 3.6二次函数的实际应用-(解析版).docx
    3.6二次函数的实际应用-(原卷版)第1页
    3.6二次函数的实际应用-(原卷版)第2页
    3.6二次函数的实际应用-(原卷版)第3页
    3.6二次函数的实际应用-(解析版)第1页
    3.6二次函数的实际应用-(解析版)第2页
    3.6二次函数的实际应用-(解析版)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    3.6 二次函数的实际应用-中考数学一轮复习 知识点+练习

    展开

    这是一份3.6 二次函数的实际应用-中考数学一轮复习 知识点+练习,文件包含36二次函数的实际应用-解析版docx、36二次函数的实际应用-原卷版docx等2份试卷配套教学资源,其中试卷共113页, 欢迎下载使用。
    第三章 函数
    3.6二次函数的实际应用
    一、课标解读
    1.通过对实际问题的分析,体会二次函数的意义。
    2.会用配方法将数字系数的二次函数的表达式化为的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题。
    3.能用二次函数函数解决简单的实际问题。
    二、知识点回顾
    知识点1.二次函数营销问题
    二次函数营销问题通常是运用“总利润=总售价-总成本”或“总利润=每件商品所获利润×销售数量”,建立利润与价格之间的函数关系.再根据二次函数性质和题意解决问题.
    知识点2.二次函数实物模型问题
    此类问题通常以抛物线形的物体或物体运动为背景,常用解题思路是根据题意,设出适当二次函数的解析式,代入适当坐标求出函数解析式,再通过对临界点的讨论,应用数形结合思想解决问题.
    知识点3.二次函数的图形问题
    此类问题通常以几何图形为背景,常以线段长度、图形面积等几何量为研究对象,通过几何知识,求出或列出函数关系式,再应用二次函数的性质和题意解决问题.
    三、热点训练
    热点1:二次函数的营销问题
    一练基础
    1.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为_______元.
    2.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(,且x为整数)出售,可卖出件,若使利润最大,则每件商品的售价应为_______元.
    3.(2021·辽宁沈阳·中考真题)某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为__________元时,才能使每天所获销售利润最大.
    4.(2021·辽宁大连·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y(单位:千克)和每千克的售价x(单位:元)满足一次函数关系(如图所示),其中,
    (1)求y关于x的函数解析式;
    (2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?

    5.(2021·辽宁鞍山·中考真题)2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).
    (1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;
    (2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?

    二练巩固
    6.(2021·辽宁盘锦·中考真题)某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床台.
    (1)当时,完成以下两个问题:
    ①请补全下面的表格:

    A型
    B型
    车床数量/台
    ________

    每台车床获利/万元
    10
    ________
    ②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?
    (2)当0<≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.




































    7.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.

    (1)求y与x之间的函数关系式;
    (2)设销售收入为P(万元),求P与x之间的函数关系式;
    (3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).
    8.(2021·湖北荆门·中考真题)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.
    x
    40
    70
    90
    y
    180
    90
    30
    W
    3600
    4500
    2100
    (1)求y关于x的函数解析式(不要求写出自变量的取值范围);
    (2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;
    (3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.
    9.(2021·辽宁丹东·中考真题)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.
    (1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)
    (2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?
    (3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?
    10.(2021·江苏泰州·中考真题)农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同.以每棵树上桃子的数量x(个)为横坐标、桃子的平均质量y(克/个)为纵坐标,在平面直角坐标系中描出对应的点,发现这些点大致分布在直线AB附近(如图所示).

    (1)求直线AB的函数关系式;
    (2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式w=y+2.在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?
    11.(2021·四川雅安·中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中,且x为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;
    (1)求y与x之间的函数关系式;
    (2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.
    三练拔高
    12.(2021·湖南郴州·中考真题)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量(单位:万件)与销售单价(单位:元)之间有如下表所示关系:


    4.0
    5.0
    5.5
    6.5
    7.5



    8.0
    6.0
    5.0
    3.0
    1.0


    (1)根据表中的数据,在图中描出实数对所对应的点,并画出关于的函数图象;
    (2)根据画出的函数图象,求出关于的函数表达式;
    (3)设经营此商品的月销售利润为(单位:万元).
    ①写出关于的函数表达式;
    ②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?
    13.(2021·四川南充·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
    (1)求苹果的进价.
    (2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.
    (3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入购进支出)
    14.(2021·四川遂宁·中考真题)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元.
    (1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?
    (2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?
    15.(2020·内蒙古呼和浩特·中考真题)已知某厂以小时/千克的速度匀速生产某种产品(生产条件要求),且每小时可获得利润元.
    (1)某人将每小时获得的利润设为y元,发现时,,所以得出结论:每小时获得的利润,最少是180元,他是依据什么得出该结论的,用你所学数学知识帮他进行分析说明;
    (2)若以生产该产品2小时获得利润1800元的速度进行生产,则1天(按8小时计算)可生产该产品多少千克;
    (3)要使生产680千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.
    16.(2020·湖北黄冈·中考真题)网络销售已经成为一种热门的销售方式为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元,每日销售量与销售单价x(元)满足关系式:.经销售发现,销售单价不低于成本价格且不高于30元.当每日销售量不低于时,每千克成本将降低1元设板栗公司销售该板栗的日获利为W(元).
    (1)请求出日获利W与销售单价x之间的函数关系式
    (2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?
    (3)当元时,网络平台将向板栗公可收取a元的相关费用,若此时日获利的最大值为42100元,求a的值.
    17.某农作物的生长率P 与温度 t(℃)有如下关系:如图 1,当10≤t≤25 时可近似用函数刻画;当25≤t≤37 时可近似用函数 刻画.
     (1)求h的值.
     (2)按照经验,该作物提前上市的天数m(天)与生长率P 满足函数关系:
    生长率P 
    0.2
    0.25
    0.3
    0.35
    提前上市的天数m (天)
    0
    5
    10
    15
    ①请运用已学的知识,求m 关于P 的函数表达式;
    ②请用含的代数式表示m ;
    (3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为 200元,该作物 30 天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t(℃)之间的关系如图 2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).

    热点2:二次函数的实物建模问题
    一练基础
    1.(2021·广东·九年级专题练习)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h=20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有( )

    A.①② B.②③ C.①③④ D.①②③
    2.(2021·全国·九年级课时练习)广场上水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离(米)的函数解析式是,那么水珠的高度达到最大时,水珠与喷头的水平距离是( )
    A.1米 B.2米 C.5米 D.6米
    3.(2021·四川三台·一模)如图所示,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度为,顶点M距水面(即),小孔顶点N距水面(即).当水位上涨到刚好淹没小孔时,借助图中的直角坐标系,可以得出此时大孔的水面宽度是_________m.

    4.(2021·云南文山·一模)某县进行创建卫生城市申报工作,制作洗手台的盛水容器如图1所示.科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为H(单位:),如果在离水面竖直距离为h(单位:)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:)与h的关系式为.应用思考:现用高度为的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离处开一个小孔.

    (1)写出与h的关系式.
    (2)求当h为何值时,射程s有最大值,最大射程是多少?
    5.(2021·全国·九年级课时练习)如图所示,某河面上有一座抛物线形拱桥,桥下水面在正常水位时,宽为,若水位上升,水面就会达到警戒线这时水面宽为.

    (1)建立适当的平面直角坐标系并求出抛物线的解析式;
    (2)若洪水到来时,水位以每小时的速度上升,从警戒线开始,再持续多少小时就能到达拱桥的拱顶?
    二练巩固
    6.(2020·山东青岛·中考真题)某公司生产型活动板房成本是每个425元.图①表示型活动板房的一面墙,它由长方形和抛物线构成,长方形的长,宽,抛物线的最高点到的距离为.

    (1)按如图①所示的直角坐标系,抛物线可以用表示,求该抛物线的函数表达式;
    (2)现将型活动板房改造为型活动板房.如图②,在抛物线与之间的区域内加装一扇长方形窗户,点,在上,点,在抛物线上,窗户的成本为50元.已知,求每个型活动板房的成本是多少?(每个型活动板房的成本=每个型活动板房的成本+一扇窗户的成本)
    (3)根据市场调查,以单价650元销售(2)中的型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个型活动板房.不考虑其他因素,公司将销售单价(元)定为多少时,每月销售型活动板房所获利润(元)最大?最大利润是多少?
    7.(2021·浙江金华·中考真题)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为.

    (1)求雕塑高OA.
    (2)求落水点C,D之间的距离.
    (3)若需要在OD上的点E处竖立雕塑EF,,.问:顶部F是否会碰到水柱?请通过计算说明.
    8.(2022·山东省青岛第二十六中学九年级期末)如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.

    (1)建立如图所示的直角坐标系,求抛物线的表达式;
    (2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?
    9.(2021·山东青岛·中考真题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度(米)与小钢球运动时间(秒)之间的函数关系如图所示;小钢球离地面高度(米)与它的运动时间(秒)之间的函数关系如图中抛物线所示.

    (1)直接写出与之间的函数关系式;
    (2)求出与之间的函数关系式;
    (3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?
    10.(2021·浙江衢州·中考真题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.
    (1)求桥拱项部O离水面的距离.
    (2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.
    ①求出其中一条钢缆抛物线的函数表达式.
    ②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.


    11.(2021·山东即墨·一模)即墨古城某城门横断面分为两部分,上半部分为抛物线形状,下半部分为正方形(OMNE为正方形),已知城门宽度为4米,最高处离地面6米,如图1所示,现以O点为原点,OM所在的直线为轴,OE所在的直线为y轴建立直角坐标系.
    (1)求出上半部分抛物线的函数表达式,并写出其自变量的取值范围;
    (2)有一辆宽3米,高4.5米的消防车需要通过该城门进入古城,请问该消防车能否正常进入?
    (3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB,AD,CD为三根承重钢支架,A、D在抛物线上,B,C在地面上,已知钢支架每米50元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?


    三练拔高
    12.(2021·贵州安顺·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面可视为抛物线的一部分,在某一时刻,桥拱内的水面宽,桥拱顶点到水面的距离是.

    (1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;
    (2)一只宽为的打捞船径直向桥驶来,当船驶到桥拱下方且距点时,桥下水位刚好在处.有一名身高的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);
    (3)如图③,桥拱所在的函数图象是抛物线,该抛物线在轴下方部分与桥拱在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移个单位长度,平移后的函数图象在时,的值随值的增大而减小,结合函数图象,求的取值范围.
    13.(2021·全国·九年级单元测试)一隧道内设双行公路,隧道的高MN为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米.

    (1)求该抛物线的解析式;
    (2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ(居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;
    (3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG,使H、G两点在抛物线上,A、B两点在地面DE上,设GH长为n米,“脚手架”三根木杆AG、GH、HB的长度之和为L,当n为何值时L最大,最大值为多少?
    14.(2021·福建省福州延安中学九年级阶段练习)如图所示,一场篮球赛中,队员甲跳起投篮,已知球出手时离地面米,与篮圈中心的水平距离为7米,当球出手的水平距离4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.

    (1)请根据图中所给的平面直角坐标系,求出篮球运行轨迹的抛物线解析式;
    (2)问此篮球能否投中?
    (3)此时,若对方队员乙上前盖帽,已知乙最大摸高3.19米,他如何做才有可能获得成功?(说明在球出手后,未达到最高点时,被防守队员拦截下来,称为盖帽,但球到达最高点后,处于下落过程时,防守队员再出手拦截,属于犯规,判进攻方得2分.)
    15.(2021·江苏秦淮·二模)如图①,小明和小亮分别站在平地上的两地先后竖直向上抛小球(抛出前两小球在同一水平面上),小球到达最高点后会自由竖直下落到地面.两球到地面的距离和与小球A离开小明手掌后运动的时间之间的函数图像分别是图②中的抛物线.已知抛物线经过点,顶点是,抛物线经过和两点,两抛物线的开口大小相同.

    (1)分别求出与x之间的函数表达式.
    (2)在小球B离开小亮手掌到小球A落到地面的过程中.
    ①当x的值为__________时,两小球到地面的距离相等;
    ②当x为何值时,两小球到地面的距离之差最大?最大是多少?
    16.(2021·山东·济宁市第十五中学九年级阶段练习)某喷泉中间的喷水管,喷水点向各个方向喷射出去的水柱为形状相同的抛物线,以水平方向为轴,喷水管所在直线为轴,喷水管与地面的接触点为原点建立直角坐标系,如图所示,已知喷出的水柱距原点处达到最高,高度为.

    (1)求水柱所在抛物线(第一象限)的函数表达式.
    (2)身高为的小明站在距离喷水管的地方,他会被水喷到吗?
    (3)现重新改建喷泉,升高喷水管,使落水点与喷水管距离,已知喷水管升高后,喷水管喷出的水柱抛物线形状不变,且水柱仍在距离原点处达到最高,则喷水管要升高多少?
    17. 如图1,已知水龙头喷水的初始速度v0可以分解为横向初始速度vx和纵向初始速度vy,θ是水龙头的仰角,且v02=vx2+vy2.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA为15米,山坡的坡比为.离开水龙头后的水(看成点)获得初始速度v0米/秒后的运动路径可以看作是抛物线,点M是运动过程中的某一位置.忽略空气阻力,实验表明:M与A的高度之差d(米)与喷出时间t(秒)的关系为d=vyt-5t2;M与A的水平距离为vxt米.已知该水流的初始速度v0为15米/秒,水龙头的仰角θ为53°.

    (1)求水流的横向初始速度vx和纵向初始速度vy;
    (2)用含t的代数式表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围);
    (3)水流在山坡上的落点C离喷射点A的水平距离是多少米?若要使水流恰好喷射到坡脚B处的小树,在相同仰角下,则需要把喷射点A沿坡面AB方向移动多少米?(参考数据:sin53°≈,cos53°≈,tan53°≈)
    热点3:二次函数中的几何图形问题
    一练基础
    1.(2021·天津河西·二模)在边长为的正方形中,对角线与相交于点O,P是上一动点,过P作,分别交正方形的两条边于点E,F.设,的面积为y,当时,y与x之间的关系式为( )

    A. B.
    C. D.
    2.(2021·北京·中考真题)如图,用绳子围成周长为的矩形,记矩形的一边长为,它的邻边长为,矩形的面积为.当在一定范围内变化时,和都随的变化而变化,则与与满足的函数关系分别是( )

    A.一次函数关系,二次函数关系 B.反比例函数关系,二次函数关系
    C.一次函数关系,反比例函数关系 D.反比例函数关系,一次函数关系
    3.(2021·全国·九年级课时练习)如图所示,矩形中,,P是线段上一点(P不与B重合),M是上一点,且,设的面积为y,则y与x之间的函数关系式为( )


    A. B.
    C. D.
    4.(2019·浙江·乐清市乐成公立寄宿学校九年级期中)如图,抛物线y=﹣x2+bx+c过等腰Rt△OAB的A,B两点,点B在点A的右侧,直角顶点A(0,3).

    (1)求b,c的值.
    (2)P是AB上方抛物线上的一点,作PQ⊥AB交OB于点Q,连接AP,是否存在点P,使四边形APQO是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.
    5.(2021·全国·九年级专题练习)如图,为一块铁板余料,,高AD=10,要用这块余料裁出一个矩形,使矩形的顶点,分别在边上,上,顶点,在边上上,则矩形面积的最大为_________.


    二练巩固
    6.(2021·江苏·泰州中学附属初中三模)某牧场准备利用现成的一堵“7”字型的墙面(如图中粗线表示墙面,已知,米,米)和总长为36米的篱笆围建一个“日”形的饲养场(细线表示篱笆,饲养场中间也是用篱笆隔开),如图,点可能在线段上,也可能在线段的延长线上.

    (1)当点在线段上时,
    ①设的长为米,则______米(用含的代数式表示);
    ②若要求所围成的饲养场的面积为66平方米,求饲养场的宽;
    (2)饲养场的宽为多少米时,饲养场的面积最大?最大面积为多少平方米?
    7.(2021·四川内江·中考真题)如图,抛物线与轴交于、两点,与轴交于点.直线与抛物线交于、两点,与轴交于点,点的坐标为.
    (1)求抛物线的解析式与直线的解析式;
    (2)若点是抛物线上的点且在直线上方,连接、,求当面积最大时点的坐标及该面积的最大值;
    (3)若点是轴上的点,且,求点的坐标.

    8.(2021·辽宁·建昌县教师进修学校二模)如图,抛物线与x轴交于A,B两点,与y轴交于点C,直线经过B,C两点,点P为第一象限内抛物线上一点,射线OP与线段BC交于点D.
    (1)求抛物线的解析式;
    (2)如图1,连接AC,当∠OAC+∠ODC=180°时,求点P的坐标;
    (3)过点B作BE⊥x轴交射线OP于点E,当BDE为等腰三角形时,直接写出点D的坐标.

    9.(2021·广西·南宁二中三模)如图,抛物线与轴交于、两点(点在点的左侧),与轴交于点,连接、.点沿以每秒个单位长度的速度由点向点运动,同时,点沿以每秒1个单位长度的速度由点向点运动,当一个点停止运动时,另一个点也随之停止运动,连接.过点作轴,与抛物线交于点,点是点关于抛物线对称轴的对应点,连接、交于点.设点的运动时间为秒().

    (1)求直线的函数表达式;
    (2)①直接写出,两点的坐标(用含的代数式表示,结果需化简);
    ②在点、运动的过程中,当时,求的值;
    (3)试探究在点,运动的过程中,是否存在某一时刻,使得点为的中点?若存在,请直接写出此时的值与点的坐标;若不存在,请说明理由.

    三练拔高
    10.(2021·湖北襄阳·二模)如图1,在平面直角坐标系中,抛物线与直线交于点和点,与轴交于点.

    (1)求,的值及抛物线的解析式;
    (2)在图1中,把向上平移个单位长度,始终保持点的对应点在第二象限抛物线上,点,的对应点分别为,,若直线与的边有两个交点,求的取值范围;
    (3)如图2,在抛物线上是否存在点(不与点重合),使和的面积相等?若存在,直接写出点的坐标;若不存在,请说明理由.
    11.(2021·福建省厦门第六中学三模)如图1,抛物线y=x2+bx+c与x轴交于点A、B,OB=3OA=3.
    (1)求抛物线的解析式;
    (3)如图2,直线l与抛物线有且只有一个公共点E,l与抛物线对称轴交于点F,若点E的横坐标为2,求△AEF的面积;
    (2)如图3,直线y=kx+n与抛物线交于点C、D,若△ACD的内心落在x轴上,求n的取值范围.

    12.(2021·重庆实验外国语学校二模)如图1,在平面直角坐标系中,抛物线与轴交于、两点(点在点的左侧),与轴交于点,点为直线上方抛物线上一动点.

    (1)求直线的解析式;
    (2)过点作交抛物线于,连接,,,,记四边形的面积为,的面积为,当的值最大时,求点的坐标和的最大值;
    (3)如图2,将抛物线水平向右平移,使得平移后的抛物线经过点,为平移后的抛物线的对称轴直线上一动点,将线段沿直线平移,平移后的线段记为(线段始终在直线左侧),是否存在以,,为顶点的等腰直角?若存在,请写出满足要求的所有点的坐标并写出其中一种结果的求解过程,若不存在,请说明理由.
    13.(2021·江苏常州·中考真题)如图,在平面直角坐标系中,正比例函数和二次函数的图像都经过点和点B,过点A作的垂线交x轴于点C.D是线段上一点(点D与点A、O、B不重合),E是射线上一点,且,连接,过点D作x轴的垂线交抛物线于点F,以、为邻边作.
    (1)填空:________,________;
    (2)设点D的横坐标是,连接.若,求t的值;
    (3)过点F作的垂线交线段于点P.若,求的长.
    14.(2021·辽宁·沈阳实验中学二模)如图1,直线交x轴于点A,交y轴于点,抛物线经过点A,交y轴于点,点P为地物线上一个动点,过点P作x轴的垂线,过点B作于点D,连接,设点P的横坐标为m.
    (1)求抛物线的解析式;
    (2)当为等腰直角三角形时,求线段的长;
    (3)如图2,将绕点B逆时针旋转到,且旋转角当点P的对应点落在x轴上时,请直接写出点P的坐标.

    15.(2021·辽宁盘锦·中考真题)如图,抛物线与轴交于A,B两点(点A在点B的左侧),与轴交于点C,直线与轴交于点D,与轴交于点E,与直线BC交于点F.

    (1)点F的坐标是________;
    (2)如图1,点P为第一象限抛物线上的一点,PF的延长线交OB于点Q,PM⊥BC于点M,QN⊥BC于点N,,求点P的坐标;
    (3)如图2,点S为第一象限抛物线上的一点,且点S在射线DE上方,动点G从点E出发,沿射线DE方向以每秒个单位长度的速度运动,当SE=SG,且时,求点G的运动时间.


    相关试卷

    中考数学一轮复习知识点梳理+练习考点11 一次函数的实际应用(含解析):

    这是一份中考数学一轮复习知识点梳理+练习考点11 一次函数的实际应用(含解析),共1页。

    (通用版)中考数学一轮复习考点练习16 二次函数实际应用(教师版):

    这是一份(通用版)中考数学一轮复习考点练习16 二次函数实际应用(教师版),共25页。

    中考数学一轮复习《函数的实际应用》课时跟踪练习(含答案):

    这是一份中考数学一轮复习《函数的实际应用》课时跟踪练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map