![2021-2022学年冀教版七年级数学下册第九章 三角形专题训练练习题(无超纲)01](http://m.enxinlong.com/img-preview/2/3/12767414/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第九章 三角形专题训练练习题(无超纲)02](http://m.enxinlong.com/img-preview/2/3/12767414/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第九章 三角形专题训练练习题(无超纲)03](http://m.enxinlong.com/img-preview/2/3/12767414/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第九章 三角形综合与测试练习
展开冀教版七年级数学下册第九章 三角形专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )
A.42° B.48° C.52° D.58°
2、数学课上,同学们在作中AC边上的高时,共画出下列四种图形,其中正确的是( ).
A. B.C. D.
3、已知△ABC的内角分别为∠A、∠B、∠C,下列能判定△ABC是直角三角形的条件是( )
A.∠A=2∠B=3∠C B.∠C=2∠B C.∠A+∠B=∠C D.∠A:∠B:∠C= =3:4:5
4、若一个三角形的三个外角之比为3:4:5,则该三角形为( )
A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
5、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )
A.180° B.210° C.360° D.270°
6、以下列长度的各组线段为边,能组成三角形的是( )
A.,, B.,,
C.,, D.,,
7、以下长度的三条线段,能组成三角形的是( )
A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9
8、下列长度的三条线段能组成三角形的是( )
A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 11
9、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )
A.56° B.34° C.44° D.46°
10、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,中,已知点D、E、F分别为BC、AD、CE的中点,设的面积为,的面积为,则______.
2、如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.
3、如图,A,E,F共线,ABCD,∠A=130°,∠C=125°,则∠CEF等于_______度.
4、如图,在直线l1∥l2,把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=___度.
5、一个三角形的两边分别是3和7,如果第三边长为整数,那么第三边可取的最大整数是___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.
2、(1)先化简,再求值:,其中a=4.
(2)若a,b,c分别为三角形的三边,化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|
3、概念学习 :已知△ABC,点P为其内部一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形,其内角与△ABC的三个内角分别相等,那么就称点P为△ABC的等角点.
理解应用
(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写:“真命题”;反之,则写“假命题”
①内角分别为30°、60°、90°的三角形存在等角点;
②任意的三角形都存在等角点.
(2)如图①中,点P是锐角三角形△ABC的等角点,若∠BAC=∠PBC,探究图中么∠BPC、∠ABC、∠ACP之间的数量关系,并说明理由.
4、如图,ABCD,∠BMN与∠DNM的平分线相交于点G,
完成下面的证明:
∵MG平分∠BMN,
∴∠GMN=∠BMN( ),
同理∠GNM=∠DNM.
∵ABCD
∴∠BMN+∠DNM=________( ).
∴∠GMN+∠GNM=________.
∵∠GMN+∠GNM+∠G=________,
∴∠G=________.
5、如图,BD⊥AC,∠1=∠2,∠C=66°,求∠ABC的度数.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.
【详解】
解:∵,
∴,
∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.
2、A
【解析】
【分析】
满足两个条件:①经过点B;②垂直AC,由此即可判断.
【详解】
解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,
故选:A.
【点睛】
本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
3、C
【解析】
【分析】
根据三角形内角和定理依次计算判断.
【详解】
解:A、设∠C=2x,则∠B=3x,∠A=6x,
∵,
∴,
解得,
∴∠A=6x=,
∴△ABC不是直角三角形,故该选项不符合题意;
B、当∠C=20°,∠B=10°时符合题意,但是无法判断△ABC是直角三角形,
故该选项不符合题意;
C、∵∠A+∠B=∠C,,
∴,即△ABC是直角三角形,
故该选项符合题意;
D、设∠A=3x,∠B=4x,∠C=5x,
∵,
∴,
解得,
∴,
∴△ABC不是直角三角形,
故该选项不符合题意;
故选:C.
【点睛】
此题考查了三角形内角和定理,熟记三角形内角和为180度并应用是解题的关键.
4、A
【解析】
【分析】
根据三角形外角和为360°计算,求出内角的度数,判断即可.
【详解】
解:设三角形的三个外角的度数分别为3x、4x、5x,
则3x+4x+5x=360°,
解得,x=30°,
∴三角形的三个外角的度数分别为90°、120°、150°,
对应的三个内角的度数分别为90°、60°、30°,
∴此三角形为直角三角形,
故选:A.
【点睛】
本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
5、B
【解析】
【分析】
已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;
【详解】
解:如图所示,
∵,
∴,
∵,,
∴,
∵,,
∴,
∵,,
∴;
故选D.
【点睛】
本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.
6、C
【解析】
【分析】
根据三角形三条边的关系计算即可.
【详解】
解:A. ∵2+4=6,∴,,不能组成三角形;
B. ∵2+5<9,∴,,不能组成三角形;
C. ∵7+8>10,∴,,能组成三角形;
D. ∵6+6<13,∴,,不能组成三角形;
故选C.
【点睛】
本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.
7、C
【解析】
【分析】
由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
【详解】
解:A、2+3=5,不能组成三角形,不符合题意;
B、4+4=8,不能组成三角形,不符合题意;
C、3+4.8>7,能组成三角形,符合题意;
D、3+5<9,不能组成三角形,不符合题意.
故选:C.
【点睛】
本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
8、C
【解析】
【分析】
根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.
【详解】
解:A.∵3+4<8,
∴不能组成三角形,故本选项不符合题意;
B.∵4+4<10,
∴不能组成三角形,故本选项不符合题意;
C.∵5+6>10,
∴能组成三角形,故本选项符合题意;
D.∵5+6=11,
∴不能组成三角形,故本选项不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.
9、C
【解析】
【分析】
依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
【详解】
解:如图:
∵l1∥l2,∠1=46°,
∴∠3=∠1=46°,
又∵l3⊥l4,
∴∠2=90°﹣46°=44°,
故选:C.
【点睛】
本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
10、C
【解析】
【分析】
根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
【详解】
解:c的范围是:5﹣3<c<5+3,即2<c<8.
∵c是奇数,
∴c=3或5或7,有3个值.
则对应的三角形有3个.
故选:C.
【点睛】
本题主要考查了三角形三边关系,准确分析判断是解题的关键.
二、填空题
1、4:1##4
【解析】
【分析】
利用三角形的中线的性质证明再证明从而可得答案.
【详解】
解: 点F为CE的中点,
点E为AD的中点,
故答案为:
【点睛】
本题考查的是与三角形的中线有关的面积的计算,掌握“三角形的中线把一个三角形的面积分为相等的两部分”是解本题的关键.
2、25
【解析】
【分析】
先根据三角形内角和定理求出∠A=25°,然后根据平移的性质得到,则.
【详解】
解:∵∠B=55°,∠C=100°,
∴∠A=180°-∠B-∠C=25°,
由平移的性质可得,
∴,
故答案为:25.
【点睛】
本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.
3、75
【解析】
【分析】
根据平行线的性质求出∠BDC,求出∠FDE,根据三角形内角和定理求出即可.
【详解】
解:连接AC,如图:
∵AB∥CD,
∴∠BAC+∠DCA=180°,
∵∠BAF=130°,∠DCE=125°,
∴(∠CAF+∠ACE)+(∠BAC+∠DCA)=130°+125°=255°,
∴∠CAF+∠ACE=255°-(∠BAC+∠DCA)=255°+180°=75°,
∵∠CEF是△ACE外角,
∴∠CEF=∠CAF+∠ACE=75°.
故答案为:75.
【点睛】
本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同旁内角互补.
4、65
【解析】
【分析】
根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.
【详解】
解:∵∠3是△ABC的外角,∠1=∠ABC=35°,
∴∠3=∠C+∠ABC=30°+35°=65°,
∵直线l1∥l2,
∴∠2=∠3=65°,
故答案为:65.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.
5、9
【解析】
【分析】
根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得第三边长的最大值.
【详解】
解:设第三边为a,
根据三角形的三边关系,得:7﹣3<a<3+7,
即4<a<10,
∵a为整数,
∴a的最大值为9.
故答案为:9.
【点睛】
此题考查了三角形的三边关系.注意第三边是整数的已知条件.
三、解答题
1、∠AFE=50°.
【解析】
【分析】
根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.
【详解】
解:∵CE平分∠ACB,∠ACB=80°,
∴∠ECB=,
∵AD是△ABC边BC上的高,AD⊥BC,
∴∠ADC=90°,
∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,
∴∠AFE=∠DFC=50°.
【点睛】
本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.
2、(1)a-1;3;(2)-a+b+3c.
【解析】
【分析】
(1)先根据单项式乘以多项式法则及平方差公式展开,合并得出最简结果,再代入求值即可得答案;
(2)根据三角形的三边关系可得绝对值内的式子的符号,根据绝对值的性质化简即可得答案.
【详解】
(1)a(1-4a)+(2a+1)(2a-1)
=a-4a2+4a2-1
=a-1,
当a=4时,原式=4-1=3.
(2)∵a、b、c为三角形三边的长,
∴a+b>c,a+c>b,b+c>a,
∴|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|
=|a-(b+c)|+|b-(c+a)|+|(c+b)-a|
=b+c-a+a+c-b+c+b-a
=-a+b+3c.
【点睛】
本题考查单项式乘以多项式法则、平方差公式、三角形三边关系及绝对值的性质,三角形任意两边的和大于第三边;任意两边的差小于第三边;熟练掌握相关运算法则及性质是解题关键.
3、(1)①真命题;②假命题;(2)∠BPC=∠ABC+∠ACP
【解析】
【分析】
(1)①根据等角点的定义,可知内角分别为30°、60°、90°的三角形存在等角点,从而可作出判断;
②等边三角形不存在等角点,故可作出判断;
(2)根据∠BPC=∠ABP+∠BAC+∠ACP以及∠BAC=∠PBC,即可得出三个角间的数量关系.
【详解】
(1)①作内角分别为30°、60°、90°的三角形斜边的中线,取中线的中点,则此点就是此直角三角形的等角点,故为真命题;
故答案为:真命题;
②任意三角形都存在等角点是假命题,如等边三角形不存在等角点,故为假命题;
故答案为:假命题;
(2)∠BPC=∠ABC+∠ACP
理由如下:
∵∠ABP+∠BAP=180°−∠BPA,∠ACP+∠CAP=180°−∠CPA
∴∠ABP+∠BAP+∠ACP+∠CAP =180°−∠BPA+180°−∠CPA=360°−(∠BPA+∠CPA)
即∠ABP+∠BAC+∠ACP=360°−(∠BPA+∠CPA)
∴∠BPC=360°−(∠BPA+∠CPA)= ∠ABP+∠BAC+∠ACP
∵∠BAC=∠PBC
∴∠BPC=∠ABP+∠BAC+∠ACP=∠ABP+∠PBC+∠ACP
=∠ABC+∠ACP
∴∠BPC=∠ABC+∠ACP
【点睛】
本题主要考查三角形内角和定理的应用,解决问题的关键是理解等角的定义,根据等角的定义及三角形的内角和得出角的关系.
4、角分线的定义;180°;两直线平行,同旁内角互补;90°;180°;90°
【解析】
【分析】
根据角平分线的定义,可得∠GMN=∠BMN,∠GNM=∠DNM. 再由ABCD,可得∠BMN+∠DNM=180°,从而得到∠GMN+∠GNM=90°.然后根据三角形的内角和定理,即可求解.
【详解】
证明:∵MG平分∠BMN,
∴∠GMN=∠BMN(角分线的定义),
同理∠GNM=∠DNM.
∵ABCD,
∴∠BMN+∠DNM=180°(两直线平行,同旁内角互补).
∴∠GMN+∠GNM=90°.
∵∠GMN+∠GNM+∠G=180°,
∴∠G=90°.
【点睛】
本题主要考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟练掌握相关知识点是解题的关键.
5、69°
【解析】
【分析】
利用三角形的内角和定理先求出∠2、∠CBD的度数,再利用角的和差关系求出∠ABC的度数.
【详解】
解:∵BD⊥AC,
∴∠ADB=∠BDC=90°.
∵∠1=∠2,∠C=66°,
∴∠1=∠2=∠ADB=45°,
∠CBD=∠ADB﹣∠C=24°.
∴∠ABC=∠2+∠CBD
=45°+24°
=69°.
【点睛】
本题考查了三角形的内角和定理,掌握三角形的内角和等于180°是解决本题的关键.
冀教版七年级下册第九章 三角形综合与测试综合训练题: 这是一份冀教版七年级下册第九章 三角形综合与测试综合训练题,共21页。试卷主要包含了下列图形中,不具有稳定性的是,如图,在ABC中,点D等内容,欢迎下载使用。
初中数学冀教版七年级下册第九章 三角形综合与测试课后作业题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后作业题,共21页。试卷主要包含了如图,直线l1l2,被直线l3等内容,欢迎下载使用。
数学七年级下册第九章 三角形综合与测试习题: 这是一份数学七年级下册第九章 三角形综合与测试习题,共19页。试卷主要包含了如图,在中,,,则外角的度数是等内容,欢迎下载使用。