冀教版七年级下册第九章 三角形综合与测试课后测评
展开冀教版七年级数学下册第九章 三角形专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、以下各组线段长为边,能组成三角形的是( )
A.,, B.,, C.,, D.,,
2、以下长度的三条线段,能组成三角形的是( )
A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9
3、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.
证法1:如图, ∵∠A=70°,∠B=63°, 且∠ACD=133°(量角器测量所得) 又∵133°=70°+63°(计算所得) ∴∠ACD=∠A+∠B(等量代换). | 证法2:如图, ∵∠A+∠B+∠ACB=180°(三角形内角和定理), 又∵∠ACD+∠ACB=180°(平角定义), ∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换). ∴∠ACD=∠A+∠B(等式性质). |
下列说法正确的是( )
A.证法1用特殊到一般法证明了该定理
B.证法1只要测量够100个三角形进行验证,就能证明该定理
C.证法2还需证明其他形状的三角形,该定理的证明才完整
D.证法2用严谨的推理证明了该定理
4、将一张正方形纸片ABCD按如图所示的方式折叠,CE、CF为折痕,点B、D折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为( )
A.35° B.42° C.45° D.48°
5、已知,一块含30°角的直角三角板如图所示放置,,则等于( )
A.140° B.150° C.160° D.170°
6、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是( )
A.30° B.35° C.45° D.60°
7、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:
①∠CDF=30°;②∠ADB=50°;
③∠ABD=22°;④∠CBN=108°
其中正确说法的个数是( )
A.1个 B.2个 C.3个 D.4个
8、如图,在中,D是延长线上一点,,,则的度数为( )
A. B. C. D.
9、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A. B. C. D.
10、下列长度的三条线段能组成三角形的是( )
A.3,6,9 B.5,6,8 C.1,2,4 D.5,6,15
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、图①是将木条用钉子钉成的四边形和三角形木架,拉动木架,观察图②中的变动情况,说一说,其中所蕴含的数学原理是_____.
2、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)
3、如图,∠ABD=80°,∠C=38°,则∠D=___度.
4、如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.
5、如图,∠MAN=100°,点B,C是射线AM,AN上的动点,∠ACB的平分线和∠MBC的平分线所在直线相交于点D,则∠BDC的大小为__________度.
三、解答题(5小题,每小题10分,共计50分)
1、根据题意画出图形,并填注理由
证明:三角形的内角和等于180°.
已知:△ABC
求证:∴∠A+∠B+∠C=180°
证明:作BC的延长线CD,过点C作射线CE BA.
∵CE BA(辅助线)
∴∠B=∠ECD( )
∠A=∠ACE( )
∵∠BCA+∠ACE+∠ECD=180°( )
∴∠A+∠B+∠ACB=180°( )
2、在小学,我们曾经通过动手操作,利用拼图的方法研究了三角形三个内角的数量关系.如图,把三角形ABC分成三部分,然后以某一顶点(如点B)为集中点,把三个角拼在一起,观察发现恰好构成了平角,从而得到了“三角形三个内角的和是180°”的结论.但是,通过本学期的学习我们知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.
小聪认真研究了拼图的操作方法,形成了证明命题“三角形三个内角的和是180°”的思路:
①画出命题对应的几何图形;
②写出已知,求证;
③受拼接方法的启发画出辅助线;
④写出证明过程.
请你参考小聪解决问题的思路,写出证明该命题的完整过程.
3、概念学习 :已知△ABC,点P为其内部一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形,其内角与△ABC的三个内角分别相等,那么就称点P为△ABC的等角点.
理解应用
(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写:“真命题”;反之,则写“假命题”
①内角分别为30°、60°、90°的三角形存在等角点;
②任意的三角形都存在等角点.
(2)如图①中,点P是锐角三角形△ABC的等角点,若∠BAC=∠PBC,探究图中么∠BPC、∠ABC、∠ACP之间的数量关系,并说明理由.
4、已知,如图,在△ABC中,AH平分∠BAC交BC于点H,D、E分别在CA、BA 的延长线上,DB∥AH,∠D=∠E.
(1))求证:DB∥EC;
(2)若∠ABD=2∠ABC,∠DAB比∠AHC大5°.求∠D的度数.
5、如图,AD是△ABC的边BC上的中线,已知AB=5,AC=3.
(1)边BC的取值范围是 ;
(2)△ABD与△ACD的周长之差为 ;
(3)在△ABC中,若AB边上的高为2,求AC边上的高.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
解:根据三角形的三边关系,知
A、1+2<4,不能组成三角形,故不符合题意;
B、4+6>8,能组成三角形,故符合题意;
C、5+6<12,不能够组成三角形,故不符合题意;
D、3+3=6,不能组成三角形,故不符合题意.
故选:B.
【点睛】
此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
2、C
【解析】
【分析】
由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
【详解】
解:A、2+3=5,不能组成三角形,不符合题意;
B、4+4=8,不能组成三角形,不符合题意;
C、3+4.8>7,能组成三角形,符合题意;
D、3+5<9,不能组成三角形,不符合题意.
故选:C.
【点睛】
本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
3、D
【解析】
【分析】
利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.
【详解】
解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,
证法2才是用严谨的推理证明了该定理,
故A不符合题意,C不符合题意,D符合题意,
证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;
故选D
【点睛】
本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.
4、D
【解析】
【分析】
可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.
【详解】
解:设∠ECB'=α,∠FCD'=β,
根据折叠可知:
∠DCE=∠D'CE,∠BCF=∠B'CF,
∵∠ECF=21°,
∴∠D'CE=21°+β,∠B'CF=21°+α,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∴∠D'CE+∠ECF+∠B'CF=90°
∴21°+β+21°+21°+α=90°,
∴α+β=27°,
∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°
则∠B'CD'的度数为48°.
故选:D.
【点睛】
本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.
5、D
【解析】
【分析】
利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1.
【详解】
解:∵∠C=90°,∠2=∠CDE=50°,
∠3=∠C+∠CDE
=90°+50°
=140°.
∵a∥b,
∴∠4=∠3=140°.
∵∠A=30°
∴∠1=∠4+∠A
=140°+30°
=170°.
故选:D.
【点睛】
本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.
6、B
【解析】
【分析】
由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.
【详解】
解:∵△AOB绕点O逆时针旋转65°得到△COD,
∴∠AOC=65°,
∵∠AOB=30°,
∴∠BOC=∠AOC−∠AOB=35°.
故选:B.
【点睛】
本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.
7、D
【解析】
【分析】
根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.
【详解】
解:∵AD∥BC,∠C=30°,
∴∠FDC=∠C=30°,故①正确;
∴∠ADC=180°-∠FDC=180°-30°=150°,
∵∠ADB:∠BDC=1:2,
∴∠BDC=2∠ADB,
∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,
解得∠ADB=50°,故②正确
∵∠EAB=72°,
∴∠DAN=180°-∠EAB=180°-72°=108°,
∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确
∵AD∥BC,
∴∠CBN=∠DAN=108°,故④正确
其中正确说法的个数是4个.
故选择D.
【点睛】
本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.
8、B
【解析】
【分析】
根据三角形外角的性质可直接进行求解.
【详解】
解:∵,,
∴;
故选B.
【点睛】
本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
9、B
【解析】
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
10、B
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行解答即可得.
【详解】
解:根据三角形的三边关系,得
A、3+6=9,不能组成三角形,选项说法错误,不符合题意;
B、6+5=11>8,能组成三角形,选项说法正确,符合题意;
C、1+2=3<4,不能够组成三角形,选项说法错误,不符合题意;
D、5+6=11<15,不能够组成三角形,选项说法错误,不符合题意;
故选B.
【点睛】
本题考查了构成三角形的条件,解题的关键是掌握三角形的三边关系.
二、填空题
1、三角形具有稳定性,四边形具有不稳定性
【解析】
【分析】
根据三角形的稳定性和四边形的不稳定性解答.
【详解】
由图示知,四边形变形了,而三角形没有变形,其中所蕴含的数学原理是三角形具有稳定性,四边形具有不稳定性.
故答案是:三角形具有稳定性,四边形具有不稳定性.
【点睛】
本题考查了三角形的稳定性和四边形具有不稳定性,关键抓住图中图形是否变形,从而判断是否具有稳定性.
2、4(答案不唯一)
【解析】
【分析】
根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.
【详解】
解:根据三角形的三边关系,得
第三边应大于两边之差,即;而小于两边之和,即,
即第三边,
故第三根木棒的长度可以是4.
故答案为:4(答案不唯一).
【点睛】
本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.
3、
4、25
【解析】
【分析】
先根据三角形内角和定理求出∠A=25°,然后根据平移的性质得到,则.
【详解】
解:∵∠B=55°,∠C=100°,
∴∠A=180°-∠B-∠C=25°,
由平移的性质可得,
∴,
故答案为:25.
【点睛】
本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.
5、50
【解析】
【分析】
根据角平分线的定义和三角形的外角性质解答即可.
【详解】
解:∵CD平分∠ACB,BE平分∠MBC,
∴∠BCD=∠ACB,∠EBC=∠MBC,
∵∠MBC=∠MAN+∠ACB,∠EBC=∠BDC+∠BCD,∠MAN=100°,
∴∠BDC=∠EBC-∠BCD=∠MBC-∠ACB=∠MAN=50°,
故答案为:50.
【点睛】
本题考查三角形的外角性质、角平分线的定义,熟练掌握三角形的外角性质是解答的关键.
三、解答题
1、两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换
【解析】
【分析】
根据平行线的性质和平角度数等于180°求解即可.
【详解】
解:证明:作BC的延长线CD,过点C作射线CE BA.
∵CE BA(辅助线)
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°(平角等于180°)
∴∠A+∠B+∠ACB=180°(等量代换)
故答案为:两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换.
【点睛】
此题考查了证明三角形的内角和等于180°,平行线的性质以及平角度数等于180°,解题的关键是熟练掌握平行线的性质以及平角度数等于180°.
2、见解析
【解析】
【分析】
根据要求画出△ABC,写出已知,求证.构造平行线,利用平行线的性质解决问题即可.
【详解】
解:已知:△ABC.
求证:∠A+∠B+∠C=180°.
证明:如图,延长CB到F,过点B作BE∥AC.
∵BE∥AC,
∴∠1=∠4,∠5=∠3,
∵∠2+∠4+∠5=180°,
∴∠1+∠2+∠3=180°,
即∠A+∠ABC+∠C=180°.
【点睛】
本题考查三角形内角和定理的证明,平行线的性质,平角的定义等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.
3、(1)①真命题;②假命题;(2)∠BPC=∠ABC+∠ACP
【解析】
【分析】
(1)①根据等角点的定义,可知内角分别为30°、60°、90°的三角形存在等角点,从而可作出判断;
②等边三角形不存在等角点,故可作出判断;
(2)根据∠BPC=∠ABP+∠BAC+∠ACP以及∠BAC=∠PBC,即可得出三个角间的数量关系.
【详解】
(1)①作内角分别为30°、60°、90°的三角形斜边的中线,取中线的中点,则此点就是此直角三角形的等角点,故为真命题;
故答案为:真命题;
②任意三角形都存在等角点是假命题,如等边三角形不存在等角点,故为假命题;
故答案为:假命题;
(2)∠BPC=∠ABC+∠ACP
理由如下:
∵∠ABP+∠BAP=180°−∠BPA,∠ACP+∠CAP=180°−∠CPA
∴∠ABP+∠BAP+∠ACP+∠CAP =180°−∠BPA+180°−∠CPA=360°−(∠BPA+∠CPA)
即∠ABP+∠BAC+∠ACP=360°−(∠BPA+∠CPA)
∴∠BPC=360°−(∠BPA+∠CPA)= ∠ABP+∠BAC+∠ACP
∵∠BAC=∠PBC
∴∠BPC=∠ABP+∠BAC+∠ACP=∠ABP+∠PBC+∠ACP
=∠ABC+∠ACP
∴∠BPC=∠ABC+∠ACP
【点睛】
本题主要考查三角形内角和定理的应用,解决问题的关键是理解等角的定义,根据等角的定义及三角形的内角和得出角的关系.
4、(1)见解析;(2)50°
【解析】
【分析】
(1)根据平行线的性质可得∠D=∠CAH,根据角平分线的定义可得∠BAH=∠CAH,再根据已知条件和等量关系可得∠BAH=∠E,再根据平行线的判定即可求解;
(2)可设∠ABC=x,则∠ABD=2x,则∠BAH=2x,可得∠DAB=180°−4x,可得∠AHC=175°−4x,可得175°−4x=3x,解方程求得x,进一步求得∠D的度数.
【详解】
(1)证明:∵DBAH,
∴∠D=∠CAH,
∵AH平分∠BAC,
∴∠BAH=∠CAH,
∵∠D=∠E,
∴∠BAH=∠E,
∴AHEC,
∴DBEC;
(2)解:设∠ABC=x,则∠ABD=2x,∠BAH=2x,
∠DAB=180°−4x,
∠DAB比∠AHC大5°
∠AHC=175°−4x,
DBAH,
即:175°−4x=3x,
解得x=25°,
则∠D=∠CAH=∠BAH=∠ABD=2x=50°.
【点睛】
考查了三角形内角和定理,平行线的判定与性质,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.
5、(1);(2);(3).
【解析】
【分析】
(1)直接根据三角形三边关系进行解答即可;
(2)根据三角形中线将△ABD与△ACD的周长之差转换为和的差即可得出答案;
(3)设AC边上的高为,根据三角形面积公式列出方程求解即可.
【详解】
解:(1)∵△ABC中AB=5,AC=3,
∴,
即,
故答案为:;
(2)∵△ABD的周长为,
△ACD的周长为,
∵AD是△ABC的边BC上的中线,
∴,
∴-()=,
故答案为:;
(3)设AC边上的高为,
根据题意得:,
即,
解得.
【点睛】
本题考查了三角形三边关系,三角形的中线,三角形的高等知识点,熟练掌握基础知识是解本题的关键.
初中数学冀教版七年级下册第九章 三角形综合与测试课后测评: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后测评,共23页。
初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题,共23页。
数学七年级下册第九章 三角形综合与测试练习: 这是一份数学七年级下册第九章 三角形综合与测试练习,共21页。试卷主要包含了若一个三角形的三个外角之比为3,如图,直线l1l2,被直线l3等内容,欢迎下载使用。