初中数学冀教版七年级下册第九章 三角形综合与测试测试题
展开
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试测试题,共21页。试卷主要包含了如图,直线l1l2,被直线l3,下列叙述正确的是,如图,在ABC中,点D,如图,已知△ABC中,BD等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下图中能体现∠1一定大于∠2的是( )A. B.C. D.2、如图,是的中线,,则的长为( )A. B. C. D.3、人字梯中间一般会设计一“拉杆”,这样做的道理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短4、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )A.56° B.34° C.44° D.46°5、如图,将△ABC沿着DE减去一个角后得到四边形BCED,若∠BDE和∠DEC的平分线交于点F,∠DFE=α,则∠A的度数是( )A.180°﹣α B.180°﹣2α C.360°﹣α D.360°﹣2α6、下列叙述正确的是( )A.三角形的外角大于它的内角 B.三角形的外角都比锐角大C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角7、将一张正方形纸片ABCD按如图所示的方式折叠,CE、CF为折痕,点B、D折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为( )A.35° B.42° C.45° D.48°8、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )A.12 B.6 C.3 D.29、如图,已知△ABC中,BD、CE分别是△ABC的角平分线,BD与CE交于点O,如果设∠BAC=n°(0<n<180),那么∠BOE的度数是( )A.90°n° B.90°n° C.45°+n° D.180°﹣n°10、若三角形的两边a、b的长分别为3和4,则其第三边c的取值范围是( )A.3<c<4 B.2≤c≤6 C.1<c<7 D.1≤c≤7第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,∠MAN=100°,点B,C是射线AM,AN上的动点,∠ACB的平分线和∠MBC的平分线所在直线相交于点D,则∠BDC的大小为__________度.2、如图,已知点是射线上一点,过作交射线于点,交射线于点,给出下列结论:①是的余角;②图中互余的角共有3对;③的补角只有;④与互补的角共有3个,其中正确结论有______(把你认为正确的结论的序号都填上).3、如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.4、在ABC中,已知∠A=60°,∠B=80°,则∠C是_____°.5、已知中,,高和所在直线交于,则的度数是________.三、解答题(5小题,每小题10分,共计50分)1、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.2、平面上有三个点A,B,O.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出的依据:(3)比较线段OC与AC的长短并说明理由:(4)直接写出∠AOB的度数.3、如图,AD是△ABC的边BC上的中线,已知AB=5,AC=3.(1)边BC的取值范围是 ;(2)△ABD与△ACD的周长之差为 ;(3)在△ABC中,若AB边上的高为2,求AC边上的高.4、已知是的三边长.(1)若满足,,试判断的形状;(2)化简:5、已知的三边长分别为a,b,c.若a,b,c满足,试判断的形状. -参考答案-一、单选题1、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.2、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵是的中线,,∴BM= ,故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.3、B【解析】【分析】首先要考虑梯子中间设置“拉杆”的原因,是为了让梯子更加稳固,而更加稳固的原因是“拉杆”与梯子两边形成了三角形.【详解】人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加梯子的稳定性.故选:B.【点睛】本题考查三角形的稳定性,善于从生活中发现数学原理是解决本题的关键.4、C【解析】【分析】依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.【详解】解:如图:∵l1∥l2,∠1=46°,∴∠3=∠1=46°,又∵l3⊥l4,∴∠2=90°﹣46°=44°,故选:C.【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.5、B【解析】【分析】根据∠DFE=α得到∠FDE+∠FED,再根据角平分线的性质求出∠BDE+∠CED=360°-2α,利用外角的性质得到∠ADE+∠AED=2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE=α,∴∠FDE+∠FED=180°-α,由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED,∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α,∴∠ADE+∠AED=180°-∠BDE +180°-∠CED=2α,∴∠A=180°-(∠ADE+∠AED)=180°-2α,故选B.【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.6、D【解析】【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.7、D【解析】【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β,根据折叠可知:∠DCE=∠D'CE,∠BCF=∠B'CF,∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,∴α+β=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D.【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.8、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=S△ABC=×12=6,∵点E为AB的中点,∴S△BDE=S△ABD=×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.9、A【解析】【分析】根据BD、CE分别是△ABC的角平分线和三角形的外角,得到,再利用三角形的内角和,得到,代入数据即可求解.【详解】解:∵BD、CE分别是△ABC的角平分线,∴,,∴,∵,∴.故答案选:A.【点睛】本题考查三角形的内角和定理和外角的性质.涉及角平分线的性质.三角形的内角和定理:三角形的内角和等于.三角形的一个外角等于与它不相邻的两个内角之和.10、C【解析】【分析】根据三角形的两边之和大于第三边,两边之差小于第三边,即可求解.【详解】解:∵三角形的两边a、b的长分别为3和4,∴其第三边c的取值范围是 ,即 .故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.二、填空题1、50【解析】【分析】根据角平分线的定义和三角形的外角性质解答即可.【详解】解:∵CD平分∠ACB,BE平分∠MBC,∴∠BCD=∠ACB,∠EBC=∠MBC,∵∠MBC=∠MAN+∠ACB,∠EBC=∠BDC+∠BCD,∠MAN=100°,∴∠BDC=∠EBC-∠BCD=∠MBC-∠ACB=∠MAN=50°,故答案为:50.【点睛】本题考查三角形的外角性质、角平分线的定义,熟练掌握三角形的外角性质是解答的关键.2、①④##④①【解析】【分析】根据垂直定义可得∠BAC=90°,∠ADC=∠ADB=∠CAE=90°,结合三角形的内角和,然后再根据余角定义和补角定义逐一进行分析即可.【详解】解: , 是的余角;故①符合题意; , 互为余角,互为余角, ,互为余角,所以图中互余的角共有4对,故②不符合题意; 与互补;∵∠1+∠DAC=90°,∠BAD+∠DAC=90°, ∴∠1=∠BAD, ∵∠BAD+∠DAE=180°, ∴∠1+∠DAE=180°, ∴∠1与∠DAE互补, 故③不符合题意; , 所以与互补的角有 共3个,故④符合题意;所以正确的结论有:①④故答案为:①④【点睛】本题考查的是垂直的定义,互余,互补的含义,三角形的内角和定理,掌握“互为余角的两个角之和为 互为补角是两个角之和为”是解本题的关键.3、25【解析】【分析】先根据三角形内角和定理求出∠A=25°,然后根据平移的性质得到,则.【详解】解:∵∠B=55°,∠C=100°,∴∠A=180°-∠B-∠C=25°,由平移的性质可得,∴,故答案为:25.【点睛】本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.4、40【解析】【分析】根据三角形内角和定理计算即可.【详解】解:∵∠A=60°,∠B=80°,∴∠C=180°﹣60°﹣80°=40°,故答案为:40.【点睛】本题考查三角形内角和定理,三角形内角和是180°.5、45°或135°【解析】【分析】分两种情况讨论:①如图1,为锐角三角形,由题意知, ,,,,代值计算求解即可;②如图2,为钝角三角形,由题意知,在中,,,,代值计算求解即可.【详解】解:由题意知①如图1所示,为锐角三角形∵,∴,∵∴∵∴;②如图2所示,为钝角三角形∵,∴在中,,∴;综上所述,的值为或故答案为:或.【点睛】本题考查了三角形的高,三角形的内角和定理.解题的关键在于正确求解角度.三、解答题1、不合格,理由见解析【解析】【分析】延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.【详解】解:如图,延长BD与AC相交于点E.∵是的一个外角,,,∴,同理可得∵李师傅量得,不是115°,∴这个零件不合格.【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.2、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°【解析】【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得: ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB中,因为三角形的两边之和大于第三边,所以;(3) ,理由如下:利用刻度尺测量得: ,AC=2cm,∴;(4)根据题意得: .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.3、(1);(2);(3).【解析】【分析】(1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将△ABD与△ACD的周长之差转换为和的差即可得出答案;(3)设AC边上的高为,根据三角形面积公式列出方程求解即可.【详解】解:(1)∵△ABC中AB=5,AC=3,∴,即,故答案为:;(2)∵△ABD的周长为,△ACD的周长为,∵AD是△ABC的边BC上的中线,∴,∴-()=,故答案为:;(3)设AC边上的高为,根据题意得:,即,解得.【点睛】本题考查了三角形三边关系,三角形的中线,三角形的高等知识点,熟练掌握基础知识是解本题的关键.4、(1)是等边三角形;(2)【解析】【分析】(1)由性质可得a=b,b=c,故为等边三角形.(2)根据三角形任意两边和大于第三边,任意两边差小于第三边判定正负,再由绝对值性质去绝对值计算即可.【详解】(1)∵∴且∴ ∴是等边三角形.(2)∵是的三边长∴b-c-a<0,a-b+c>0,a-b-c<0原式===【点睛】本题考查了三角形三条边的关系以及绝对值化简,根据三角形任意两边和大于第三边,任意两边差小于第三边判定绝对值内数值正负是解题的关键.5、的形状是等边三角形.【解析】【分析】利用平方数的非负性,求解a,b,c的关系,进而判断.【详解】解:∵,∴, ∴a=b=c,∴ 是等边三角形.【点睛】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含的三角形为直角三角形等,这是解决此类题的关键.
相关试卷
这是一份数学七年级下册第九章 三角形综合与测试课后练习题,共25页。试卷主要包含了如图,直线l1l2,被直线l3,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试课时作业,共20页。试卷主要包含了若三角形的两边a等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后练习题,共26页。试卷主要包含了下列图形中,不具有稳定性的是,如图,是的中线,,则的长为等内容,欢迎下载使用。