初中数学冀教版八年级下册第二十章 函数综合与测试复习练习题
展开冀教版八年级数学下册第二十章函数定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、A,B两地相距30km,甲乙两人沿同一条路线从A地到B地.如图,反映的是两人行进路程y(km)与行进时间t(h)之间的关系,①甲始终是匀速运动,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时,④甲在出发5小时后被乙追上.以上说法正确的个数有( )
A.1个 B.2个 C.3个 D.4个
2、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )
A., B.,
C., D.,
3、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
4、甲、乙两人骑车分别从A、B两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B地后停留20min 再以原速返回A地,当两人到达A地后停止骑行.设甲出发x min后距离A地的路程为y km.图中的折线表示甲在整个骑行过程中y与x的函数关系.在整个骑行过程中,两人只相遇了1次,乙的骑行速度(单位:km/min)可能是( )
A.0.1 B.0.15 C.0.2 D.0.25
5、下列各曲线中,不表示y是x的函数的是( )
A. B.
C. D.
6、甲、乙两人沿同一条路从地出发,去往100千米外的地,甲、乙两人离地的距离(千米)与时间(小时)之间的关系如图所示,以下说法正确的是( )
A.甲的速度是 B.乙的速度是
C.甲乙同时到达地 D.甲出发两小时后两人第一次相遇
7、下列曲线中,表示y是x的函数的是( )
A. B.
C. D.
8、甲、乙两人沿同一条路从A地出发,去往100千米外的B地,甲、乙两人离A地的距离(千米)与时间t(小时)之间的关系如图所示,以下说法正确的是( )
A.甲的速度是40km/h
B.乙的速度是30km/h
C.甲出发小时后两人第一次相遇
D.甲乙同时到达B地
9、函数中,自变量x的取值范围是( )
A. B. C. D.
10、已知一个等腰三角形的腰长为x,底边长为y,周长是10,则底边y关于腰长x之间的函数关系式及定义域为( )
A.y=10﹣2x(5<x<10) B.y=10﹣2x(2.5<x<5)
C.y=10﹣2x(0<x<5) D.y=10﹣2x(0<x<10)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、周末,小明骑车从家前往公园,中途休息了一段时间.他从家出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.对于下列说法:①小明中途休息了2分钟;②小明休息前的骑车速度为每分钟400米;③小明所走的路程为4400米;④小明休息前的骑车速度小于休息后的骑车速度.其中正确结论的序号是____.
2、函数的图象不经过横坐标是_____的点.
3、函数中,自变量x的取值范围是______.
4、汽车以60km/h的速度匀速行驶,行驶路程为 s km,行驶时间为 t h,如表:
t/h | 1 | 2 | 3 | 4 | 5 |
s/km | 60 | 120 | 180 | 240 | 300 |
可知:路程 =____________
(1)在上面这个过程中,变化的量是_______、_________.不变化的量是_____________.
(2)试用含t的式子表示s:s=_______.
这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.
5、如图1,正方形的边上有一定点,连接.动点从正方形的顶点出发,沿着的方向以2cm/s的速度匀速运动到终点.图2是点运动时,的面积随时间变化的全过程图象,则的长度为______cm.
三、解答题(5小题,每小题10分,共计50分)
1、一个容积为240升的水箱,安装有A、B两个注水管,注水过程中A水管始终打开,B水管可随时打开或关闭,两水管的注水速度均为定值,当水箱注满时,两水管自动停止注水.
(1)如图是某次注水过程中水箱中水量y(升)与时间x(分)之间的函数图象.
①在此次注满水箱的过程中,A水管注水 分,B水管注水 分.
②分别求A、B两水管的注水速度.
(2)若仅用12分钟将此空水箱注满,B水管应打开几分钟?
(3)若同时打开A、B两注水管,且每隔2分钟B水管自动关闭1分钟,注满此空水箱需要几分钟?
2、在国内投寄平信应付邮资如表:
信件质量x(克) | 0<x≤20 | 20<x≤40 | 40<x≤60 |
邮资y(元/封) | 1.20 | 2.40 | 3.60 |
(1)根据函数的定义,y是关于x的函数吗?
(2)结合表格解答:
①求出当x=48时的函数值,并说明实际意义.
②当寄一封信件的邮资是2.40元时,信件的质量大约是多少克?
3、已知某函数图象如图所示,请回答下列问题:
(1)自变量的取值范围是
(2)函数值的取值范围是
(3)当为 时,函数值最大;当为 时,函数值最小
(4)当随的增大而增大时,的取值范围是
4、将长为、宽为的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为.
(1)根据图,将表格补充完整:
白纸张数 | ||||||
纸条长度 |
|
|
(2)设张白纸黏合后的总长度为,则与之间的关系式是什么?
(3)你认为白纸黏合起来总长度可能为吗?为什么?
5、有这样一个问题:探究函数的图象与性质小明根据学习函数的经验,对函数的图象与性质进行了探究:下面是小明的探究过程,请补充完整
(1)函数的自变量的取值范围是
(2)下表是与的几组对应值
… | … | ||||||||||||
… | … |
求的值
(3)如图,在坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象
(4)进一步探究发现该函数的性质:当 时,随的增大而增大
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据甲、乙函数图像一个是直线一个不是直线即可判断①;根据甲从t=0开始出发,乙从t=0.5出发即可判断②③;根据甲、乙函数图像的交点的横坐标小于5可以判断④.
【详解】
解:由函数图像可知,甲的函数图像是一条直线,乙的函数图像不是直线,故甲是匀速运动,乙不是匀速运动,故①正确;
乙在第0.5小时出发,在第5小时到达,则乙的行进时间为5-0.5=4.5小时,故②错误;
根据函数图像可知乙比甲迟出发0.5小时,故③正确,
根据函数图像可知,当乙追上甲时,两人的行进路程相同,即在函数图像中的甲、乙函数图像的交点处乙追上甲,则乙追上甲时,甲出发的时间小于5小时,故④错误;
故选B.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
2、B
【解析】
【分析】
由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.
【详解】
解:由图象可知,当x>0时,y<0,
∵,
∴ax<0,a<0;
x=b时,函数值不存在,
即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,
∴b>0.
故选:B.
【点睛】
本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.
3、D
【解析】
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
4、D
【解析】
【分析】
由函数图象可求出甲、乙骑行的时间,根据题意和路程÷时间=速度可求出乙的最小速度即可求解.
【详解】
解:由函数图象知,A、B两地的距离为25km,甲往返的时间为50+50+20=120(min),
∵两人到达A地后停止骑行,且在整个骑行过程中,两人只相遇了1次,
∴乙的骑行的速度至少为25÷120= (km/min),
∵>0.2,<0.25,
∴乙的骑行速度可能是0.25km/min,
故选:D.
【点睛】
本题考查一次函数的应用,理解题意,准确从图象中获取有效信息是解答的关键.
5、D
【解析】
【分析】
根据函数的意义进行判断即可.
【详解】
解:A、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
B、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
C、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
D、图中,对于的每一个取值,可能有两个值与之对应,选项符合题意.
故选:D.
【点睛】
本题主要考查了函数的定义,解题的关键是掌握函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.
6、A
【解析】
【分析】
根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.
【详解】
解:由图象可得,
甲的速度是,故选项符合题意;
乙的速度为:,故选项不符合题意;
甲先到达地,故选项不符合题意;
甲出发小时后两人第一次相遇,故选项不符合题意;
故选:A.
【点睛】
本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.
7、C
【解析】
【分析】
根据函数的定义进行判断即可.
【详解】
解:在某一变化过程中,有两个变量x、y,一个量x变化,另一个量y随之变化,当x每取一个值,另一个量y就有唯一值与之相对应,这时,我们把x叫做自变量,y是x的函数,只有选项C中图象所表示的符合函数的意义,
故选:C.
【点睛】
本题考查函数的定义,理解函数的定义,理解自变量与函数值的对应关系是正确判断的前提.
8、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由图可得, 甲车出发第小时时距离A地千米,甲车出发第小时时距离A地千米,甲车的速度是千米/小时,故选项A符合题意;
乙车出发小时时距离A地千米,乙车速度是千米/小时,故选项B不合题意;
甲车第小时到达地,甲车的速度是千米/小时,则甲车到达地用时小时,则甲车在第小时出发,由图像可得甲,乙两车在第小时相遇,则甲车出发小时两车相遇,故选项正确;
甲车行驶千米时,乙车行驶了千米,甲车先到B地,故选项D不合题意;
故选:
【点睛】
本题主要考查了函数图象信息分析,解答本题的关键是明确题意,利用数形结合的思想解答.
9、B
【解析】
【分析】
根据分母不为零,函数有意义,可得答案.
【详解】
解:函数有意义,得
,
解得,
故选:B.
【点睛】
本题考查了函数自变量的取值范围,解题的关键是掌握分母不为零.
10、B
【解析】
【分析】
根据等腰三角形的定义即三角形的周长公式列出底边y关于腰长x之间的函数关系式,根据三角形的三边关系以及底边大于0,列出不等式组,进而求得定义域.
【详解】
一个等腰三角形的腰长为x,底边长为y,周长是10,
即
即
解得
即
解得
底边y关于腰长x之间的函数关系式为
故选B
【点睛】
本题考查了等腰三角形的定义,三角形的三边关系,函数解析式,掌握以上知识是解题的关键.
二、填空题
1、①②##②①
【解析】
【分析】
根据函数图象可知,小明4分钟所走的路程为1600米,分钟休息,分钟骑车米,骑车的总路程为2800米,根据路程、速度、时间的关系进行解答即可.
【详解】
解:①、根据图象可知,在4~6分钟,路程没有发生变化,所以小明中途休息的时间为:6﹣4=2分钟,故正确;
②、根据图象可知,当t=4时,s=1600,所以小明休息前骑车的平均速度为:1600÷4=400(米/分钟),故正确;
③、根据图象可知,小明在上述过程中所走的路程为2800米,故错误;
④、小明休息后的骑车的平均速度为:(2800﹣1600)÷(10﹣6)=300(米/分),小明休息前骑车的平均速度为:1600÷4=400(米/分钟),
400>300,所以小明休息前骑车的平均速度大于休息后骑车的平均速度,故错误;
综上所述,正确的有①②.
故答案为①②.
【点睛】
本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进而解决问题.
2、-3
【解析】
【分析】
根据分式有意义的条件:分母不为0解答即可.
【详解】
解:函数要有意义,需要,所以不经过横坐标是的点.
故答案为:-3.
【点睛】
本题主要考查了函数的自变量取值范围,掌握代数式有意义时字母的取值范围是解题关键.
3、
【解析】
【分析】
函数表达式是分式时,考虑分式的分母不能为0,可得答案;
【详解】
由题意得:
解得
故答案为.
【点睛】
本题考查了函数值变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.
4、 速度×时间 时间t 路程s 速度60km/h 60 t s t
【解析】
略
5、2
【解析】
【分析】
点P在点D时,设正方形的边长为a,a×a=18,解得a=6;当点P在点C时,×EP×6=12,解得EP=4,即EC=4,进而即可求解.
【详解】
解:当点P在点D时,由图象可知三角形APE的面积为18,设正方形的边长为a,y=AB×AD=a×a=18,解得a=6;
当点P在点C时,由图象可知三角形APE的面积为12,y=EP×AB=×EP×6=12,解得EP=4,即EC=4,
∴BE=6-4=2,
故答案是:2.
【点睛】
本题考查的是动点函数图象问题,此类问题关键是弄清楚不同时间段,图象和图形的对应关系.
三、解答题
1、(1)①16,8;②6升/分,18升/分;(2);(3)13
【解析】
【分析】
(1)①观察函数图像可知,在0-8分钟内,只有A水管打开,8-16分钟内,A水管和B水管同时打开,由此进行求解即可;
②先根据根据函数图像可知在0-8分钟内,只有A水管注水,一共注水48升,求出A水管的注水速度,然后求出16分钟内A水管一共注水=6×16=96升,从而得到B水管在8-16分钟内注水=240-96=144升,由此即可求出B水管的注水速度;
(2)设B水管应该打开x分钟,然后根据题意列出方程求解即可;
(3)先求出打开A水管3分钟和B水管2分钟的注水量为升,由,则可以得出需要循环上述过程四次需用12分钟,然后求出剩余需要的时间即可得到答案.
【详解】
解:(1)①观察函数图像可知,在0-8分钟内,只有A水管打开,8-16分钟内,A水管和B水管同时打开,
∴A水管注水16分钟,B水管注水8分钟,
故答案为:16;8;
②根据函数图像可知在0-8分钟内,只有A水管注水,一共注水48升,
∴A水管的注水速度=48÷8=6升/分;
∴16分钟内A水管一共注水=6×16=96升,
∴B水管在8-16分钟内注水=240-96=144升,
∴B水管的注水速度=144÷8=18升/分
(2)设B水管应该打开x分钟,
则由题意得:,
解得,
∴B水管应该打开分钟,
答:B水管应该打开分钟;
(3)打开A水管3分钟和B水管2分钟的注水量为升,
∵,
∴注满水箱可以打开A水管3分钟和B水管2分钟循环四次,
∴循环四次花费的时间分,
∴循环四次后还要注水的量为24升,
∵分,
∴还需要注水的时间为1分,
∴一共需要注水的时间=12+1=13分,
答:注满此空水箱需要13分钟.
【点睛】
本题主要考查了从函数图像获取信息进行求解,解题的关键在于能够准确读懂函数图像.
2、(1)y是x的函数;(2)①3.60,实际意义见解析;②大于20克,且不超过40克
【解析】
【分析】
(1)根据函数的定义判断即可.
(2)①②利用表格求出对应的函数值即可.
【详解】
解:(1)y是x的函数,
理由是:对于x的一个值,函数y有唯一的值和它对应;
(2)①当x=48时,y=3.60,
实际意义:信件质量为48克时,邮资为3.60元;
②邮资为2.40元,信件质量大约为大于20克,且不超过40克.
【点睛】
本题考查了函数的概念,解题的关键是理解题意,灵活运用所学知识解决问题.
3、 (1)-4≤x≤3
(2)-2≤y≤4
(3)1;-2
(4)-2≤x≤1
【解析】
【分析】
根据自变量的定义,函数值的定义以及函数的最值和增减性,观察函数图象分别写出即可.
(1)
根据图像观察可得:自变量x的取值范围是-4≤x≤3;
(2)
根据图像观察可得:函数y的取值范围是-2≤y≤4;
(3)
根据图像观察可得:当x为1时,函数值最大;当x为-2时,函数值最小;
(4)
根据图像观察可得:当y随x的增大而增大时,x的取值范围是-2≤x≤1.
【点睛】
本题考查了函数的性质、函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题的关键.
4、(1) , ;(2);(3)不可能,理由见解析
【解析】
【分析】
(1)理解题意分别求得白纸张数为2和5时的长度即可;
(2)根据题意,找到等量关系,列出式子即可;
(3)将代入,求解,判断是否为正整数,即可求解.
【详解】
解:(1)由题意可得,白纸张数为2时,长度为
当白纸张数为5时,长度为
故答案为:,;
(2)当白纸张数为张时,长度
故答案为
不可能.
理由:将代入,得,
解得.
因为为整数,
所以总长度不可能为.
【点睛】
本题主要考查了函数关系式的知识,解答本题的关键在于熟读题意发现题目中纸张长度的变化规律,并求出正确的函数关系式.
5、 (1)全体实数
(2)1
(3)图像见解析
(4)>2
【解析】
【分析】
(1)根据题目中的函数解析式,可以得到x的取值范围;
(2)将x=4代入函数解析式,即可得到y的值;
(3)根据表格中的数据,可以画出相应的函数图象;
(4)根据函数图象,可以写出当x为何值时,y随x的增大而增大.
(1)
函数的自变量x的取值范围是全体实数,
故答案为:全体实数;
(2)
当x=4时,,
即m的值是1;
(3)
如下图所示,
(4)
由图象可得,
当x>2时,y随x的增大而增大,
故答案为:>2.
【点睛】
本题考用描点法画函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
冀教版八年级下册第二十章 函数综合与测试课时作业: 这是一份冀教版八年级下册第二十章 函数综合与测试课时作业,共23页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题,共21页。试卷主要包含了在函数中,自变量的取值范围是,在函数中,自变量x的取值范围是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题,共22页。试卷主要包含了如图所示的图象等内容,欢迎下载使用。