


初中冀教版第二十章 函数综合与测试课时练习
展开冀教版八年级数学下册第二十章函数定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x的函数关系的图像大致是( )
A. B.
C. D.
2、甲、乙两地相距180km,一辆货车和一辆小汽车同时从甲地出发,各自匀速向乙地行驶,货车的速度为60千米/小时,小汽车的速度为90千米/小时.小汽车到达乙地后,立即按原速沿原路返回甲地.则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )
A. B.
C. D.
3、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )
A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x
4、汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数.如图描述了、两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )
A.消耗1升汽油,车最多可行驶5千米
B.车以40千米小时的速度行驶1小时,最少消耗4升汽油
C.对于车而言,行驶速度越快越省油
D.某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车更省油
5、小江和小北两兄弟步行从家里去公园,小江先出发一段时间后小北再出发,途中小北追上了小江最终先到达公园,两人所走路程s(米)与小北出发后的时间t(分钟)的函数关系如图所示.下列说法正确的是( )
A.表示的是小江步行的情况,表示的是小北步行的情况
B.小江的速度是45米/分钟,小北的速度是60米/分钟
C.小江比小北先出发16分钟.
D.小北出发后8分钟追上小江
6、小明家、公园、图书馆依次在一条直线上,周末,小明和妈妈准备去公园放风筝,但是因为小明要先去图书馆还书,所以他们同时从家出发,并约定2小时后在公园碰头.小明先骑自行车匀速前往图书馆,到达图书馆还书后按原路原速返回公园并按照约定时间准时到达公园,妈妈则匀速步行前往公园,结果迟到半小时.如图是他们离家的距离y(km)与小明离家时间x(h)的函数图象,下列说法中错误的是( )
A.小明骑车的速度是20km/h
B.小明还书用了18min
C.妈妈步行的速度为2.4km/h
D.公园距离小明家8km
7、甲、乙两辆摩托车分别从A、B两地出发相向而行,图中、分别表示两辆摩托车与A地的距离与行驶时间之间的函数关系,则下列说法:
①A、B两地相距;②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢;④两车出发后,经过0.3小时,两车相遇.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
8、EF是BC的垂直平分线,交BC于点D,点A是直线EF上一动点,它从点D出发沿射线DE方向运动,当减少时,增加,则y与x的函数表达式是( )
A. B. C. D.
9、函数的自变量x的取值范围是( )
A.x>5 B.x<5 C.x≠5 D.x≥-5
10、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是( )
A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系
B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系
C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系
D.一个正数x的平方根是y,y随着这个数x的变化而变化,y与x之间的关系
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行____________米.
2、在中,自变量的取值范围是______.
3、函数中,自变量x的取值范围是______.
4、一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是__________,y是x的__________.
如果当x=a时,y=b,那么b叫做当自变量的值为a时的__________.
5、函数的自变量x的取值范围是________.
三、解答题(5小题,每小题10分,共计50分)
1、小明某天上午时骑自行车离开家,时回到家,他有意描绘了离家的距离与时间的变化情况(如图所示).
(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)时和时,他分别离家多远?
(3)他到达离家最远的地方是什么时间?离家多远?
(4)时到时他行驶了多少千米?
(5)他可能在哪段时间内休息,并吃午餐?
(6)他由离家最远的地方返回时的平均速度是多少?
2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6立方米时,水费按a元/立方米收费;每户每月用水量超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分按c元/立方米收费,该市某用户今年3、4月份的用水量和水费如下表所示:
月份 | 用水量x(m3) | 收费y(元) |
3 | 5 | 7.5 |
4 | 9 | 27 |
(1)求a、c的值;
(2)写出每月用水量x不超过6立方米和超过6立方米时,水费y与用水量x之间的关系式;
(3)已知某户5月份的用水量为8立方米,求该用户5月份的水费.
3、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车.
(1)小红、小华谁的速度快?
(2)出发后几小时两人相遇?
(3)A,B两地离学校分别有多远?
4、综合与实践:制作一个无盖长方形盒子.
用一张正方形的纸片制成一个如图的无盖长方体纸盒.如果我们按照如图所示的方式,将正方形的四个角减掉四个大小相同的小正方形,然后沿虚线折起来,就可以做成一个无盖的长方体盒子.
(1)如果原正方形纸片的边长为a cm,剪去的正方形的边长为b cm,则折成的无盖长方体盒子的高为________cm,底面积为_______cm2,请你用含a,b的代数式来表示这个无盖长方体纸盒的容积__________cm3;
(2)如果a=20cm,剪去的小正方形的边长按整数值依次变化,即分别取1cm,2cm,3cm,4cm,5cm,6cm,7cm,8cm,9cm,10cm时,折成的无盖长方体的容积分别是多少?请你将计算的结果填入下表;
剪去正方形的边长/cm | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
容积/cm3 | 324 | 512 | _____ | _____ | 500 | 384 | 252 | 128 | 36 | 0 |
(3)观察绘制的统计表,你发现,随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积如何变化?( )
A.一直增大 B.一直减小
C.先增大后减小 D.先减小后增大
(4)分析猜想当剪去图形的边长为__________时,所得的无盖长方体的容积最大,此时无盖长方体的容积是____________cm3.
(5)对(2)中的结果,你觉得表格中的数据还有什么要改进的地方吗?
5、如图,在等边△ABC中,BC=5cm,点D是线段BC上的一动点,连接AD,过点D作DE⊥AD,垂足为D,交射线AC与点E.设BD为xcm,CE为ycm.
小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 |
y/cm | 5.0 | 3.3 | 2.0 | 1.1 | 0.4 |
| 0.3 | 0.4 | 0.3 | 0.2 | 0 |
补全表格上相关数值.
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为 cm.
-参考答案-
一、单选题
1、A
【解析】
【分析】
先作出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.
【详解】
解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
作AD∥x轴,作CD⊥AD于点D,如图所示:
∴∠DAO+∠AOD=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中,
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
∴y=x+1(x>0).
故选:A.
【点睛】
本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.
2、C
【解析】
【分析】
根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.
【详解】
解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,
故选:C.
【点睛】
本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.
3、D
【解析】
【分析】
先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.
【详解】
解:∵每千米的耗油量为:60×÷100=0.12(升/千米),
∴y=60-0.12x,
故选:D.
【点睛】
本题考查了函数关系式,求出1千米的耗油量是解题的关键.
4、B
【解析】
【分析】
根据题意和函数图象可以判断各个选项中的结论是否正确,从而可以解答本题.
【详解】
解:A、由图象可知,当车速度超过时,燃油效率大于,所以当速度超过时,消耗1升汽油,车行驶距离大于5千米,故此项不合理,不符合题意;
B、车以40千米小时的速度行驶1小时,路程为,,最少消耗4升汽油,此项合理,符合题意;
C、对于车而言,行驶速度在时,越快越省油,故此项不合理,不符合题意;
D、某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车燃油效率更高,所以更省油,故此项不合理,不符合题意.
故选:B.
【点睛】
本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答.
5、C
【解析】
【分析】
观察图象,可得:表示的是小北步行的情况,表示的是小江步行的情况,可得A错误;小江32分钟步行(1440-480)米,小北24分钟步行1440米,再根据该时间段内的速度等于路程除以时间,可得B错误;因为小江比小北先走480米,所以用480除以小江的速度30,可得C正确;设小北出发后 分钟追上小江,则 ,解出可得D错误,即可求解.
【详解】
解:根据题意得:
A、因为小江先出发一段时间后小北再出发,所以表示的是小北步行的情况,表示的是小江步行的情况,故本选项不符合题意;
B、小江的速度是米/分钟,小北的速度是米/分钟,故本选项不符合题意;
C、观察图象,得:小江比小北先出发 分钟,故本选项符合题意;
D、设小北出发后 分钟追上小江,则 ,解得: ,即小北出发后16分钟追上小江,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了函数图象的应用,准确从函数图象获取信息是解题的关键.
6、D
【解析】
【分析】
根据小明1小时到达图书馆,图书馆距离家20千米,求出小明骑车的速度判断A选项;根据小明还书用了0.3小时判断B选项;设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2列出方程求出方程的解来判断C选项;根据妈妈的速度×妈妈所用的时间求公园距离小明家的距离来判断D选项.
【详解】
解:观察图象可知,小明1小时到达图书馆,图书馆距离家20千米,小明骑车的速度是20千米/小时,故A选项不符合题意;
1.3﹣1=0.3(小时)=18(分),故B选项不符合题意;
设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2得:2.5a+20×(2﹣1.7)=20×2,解得a=2.4,故C选项不符合题意;
2.4×2.5=6(千米),故D选项符合题意;
故选:D.
【点睛】
本题考查了函数的图象,求出妈妈的速度是解题的关键.
7、B
【解析】
【分析】
根据从B到A共行驶的路程可判断①;求出乙车行驶时间,甲车行驶时间,根据减法求出时间差可判断②;根据时间与路程,求出甲乙两车的速度,根据减法求出速度差可判断③;设两相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,根据甲乙共走全程列方程,求出时间t可判断④.
【详解】
解:乙从B地到A共行走24km,故①A、B两地相距正确;
乙摩托车从B到A地用0.5h,甲摩托车从A地到B地用0.6h,
∴0.6-0.5=0.1h,故②甲车比乙车行完全程多用了0.1小时正确;
甲摩托车行驶的速度为24÷0.6=40km/h,乙摩托车行驶的速度为24÷0.4=48km/h,
∴48-40=8km/h,
故③甲车的速度比乙车慢正确;
设两车相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,
∴40t+48t=24,
解得h,
故④两车出发后,经过0.3小时,两车相遇不正确.
故选择B.
【点睛】
本题考查从行程图像获取信息和处理信息,看懂函数图像,列一元一次方程,时间差,速度差,掌握相关知识是解题关键.
8、B
【解析】
【分析】
根据垂直平分线的性质可得,,根据题意列出函数关系式即可
【详解】
EF是BC的垂直平分线,
是的角平分线
设,即
当减少时,则,增加,则
故选B
【点睛】
本题考查了垂直平分线的性质,三角形内角和定理,列函数关系式,掌握垂直平分线的性质,等腰三角形三线合一是解题的关键.
9、D
【解析】
【分析】
根据二次根式有意义的条件即可得出答案.
【详解】
解:∵函数,
∴,
解得:,
故选:D.
【点睛】
本题考查了二次根式有意义的条件,熟知根号下为非负数是解题的关键.
10、D
【解析】
【分析】
根据函数的定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,y是x的函数,由此进行逐一判断即可
【详解】
解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;
B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;
C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;
D、∵一个正数x的平方根是y,
∴,对于每一个确定的x,y都有两个值与之对应,不满足函数的关系,故符合题意;
故选D.
【点睛】
本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.
二、填空题
1、50
【解析】
【分析】
根据总路程÷回家用的时间即可求解.
【详解】
解:小明回家用了15-5=10分钟,
总路程为500,
故小明回家的速度为:500÷10=50(米/分),
故答案为50.
【点睛】
本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.
2、x≥3
【解析】
【分析】
根据二次根式的性质,被开方数大于或等于0,可以求出的范围.
【详解】
解:中,
所以,
故答案是:.
【点睛】
本题考查了求函数自变量的范围,解题的关键是掌握一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
3、
【解析】
【分析】
函数表达式是分式时,考虑分式的分母不能为0,可得答案;
【详解】
由题意得:
解得
故答案为.
【点睛】
本题考查了函数值变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.
4、 自变量 函数 函数值
【解析】
略
5、
【解析】
【分析】
根据零指数幂以及二次根式有意义的条件以及分式有意义的条件进行解答即可.
【详解】
解:∵函数,
∴,,
解得:,
∴函数的自变量x的取值范围是,
故答案为:.
【点睛】
本题考查了零指数幂,二次根式有意义的条件,分式有意义的条件,熟知分母不为零,根号下为非负数,任何非零实数的零次幂等于是解本题的关键.
三、解答题
1、(1)时间、离家的距离,自变量是时间,因变量是离家的距离;(2)15千米、30千米;(3)12:00,30千米;(4)15千米,(5)12:00-13:00;(6)15千米/小时.
【解析】
【分析】
(1)根据图象的x轴和y轴即可确定表示了哪两个变量的关系;
(2)由函数图像可以看出10时的时候他离家的距离是15千米,12时的时候他离家30千米;
(3)首先根据图象找到离家最远的距离,由此即可确定他到达离家最远的地方是什么时间,离家多远;
(4)根据图象首先找到时间为10时和12时离家的距离,然后作差即可;
(5)如果休息,那么距离没有增加,由此就可以确定在哪段时间内休息,并吃午餐;
(6)根据返回时所走路程和使用时间即可求出返回时的平均速度.
【详解】
解:(1)图像表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量;
(2)由函数图像可以看出10时的时候他离家的距离是15千米,13时的时候他离家30千米;
(3)由图象看出他到达离家最远的地方是在12-13时,离家30千米;
(4)由图象看出10时到12时他行驶了30-15=15千米;
(5)由图象看出12:00~13:00时距离没变且时间较长,得他可能在12时到13时间内休息,并吃午餐;
(6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时).
【点睛】
此题考查了函数的图象,解题关键在于看懂图中数据表示的实际意义.
2、(1)a=1.5,c=6;(2)时,,时,;(3)该用户5月份的水费为21元.
【解析】
【分析】
(1)根据题意列出方程组,解出即可求解;
(2)分时和当时,列出函数关系式,即可求解;
(3)根据 ,将 代入,即可求解.
【详解】
解:(1)根据题意得:
,
解得: ;
(2)当时,,
当时,;
(3)∵ ,
∴该用户5月份的水费(元).
【点睛】
本题主要考查了二元一次方程组的应用,列函数关系式,求函数值,明确题意,准确得到等量关系是解题的关键.
3、(1)小华的速度快;(2)出发后h两人相遇;(3)A地距学校500m,B地距学校200m
【解析】
【分析】
(1)观察纵坐标,可得路程,观察横坐标,可得时间,根据路程与时间的关系,可得速度;
(2)观察横坐标,可得答案;
(3)观察纵坐标,可得答案.
【详解】
解:(1)由纵坐标看出,小红步行了700-500= 200(m),小华行驶了700-200=500(m),
由横坐标看出都用了15min,小红的速度是200÷15=(m/min),小华的速度是500÷15= (m/min),
>,小华的速度快.
(2)由横坐标看出,出发后h两人相遇.
(3)由纵坐标看出A地距学校500m,B地距学校200m.
【点睛】
本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键.
4、 (1)b;(a-2b)2;b(a-2b)2
(2)588;576
(3)C
(4)3;588
(5)表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位
【解析】
【分析】
(1)根据截去的小正方形边长,得出无盖长方体盒子的高为bcm,然后求出底面边长,再求底面积,和体积即可;
(2)根据截去的边长,求出底面边长,再求出无盖的长方体盒子的体积即可;
(3)根据表格的信息可得随着减去的小正方形的边长的增大,得出无盖长方体盒子的容积变化规律;
(4)根据表格得出截去小正方形边长为整数3时,体积最大,计算即可;
(5)根据精确度要求越高,无盖长方体盒子的容积会更大些.
(1)
解:无盖长方体盒子的高就是截去的小正方形边长,无盖长方体盒子的高为bcm,底面边长(a-2b)cm,底面面积为(a-2b)2cm2, 做成一个无盖的长方体盒子的体积为b(a-2b)2cm3,
故答案为:b;(a-2b)2;b(a-2b)2.
(2)
解:当b=3cm, a-2b=20-6=14cm,b(a-2b)2=3×142=588cm3,
当b=4,a-2b=20,8=12cm,b(a-2b)2=4×122=576cm3,
故答案为:588;576.
(3)
解:随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积先变大,再变小.
故选择C.
(4)
根据无盖长方体盒子的容积的变化,截去的正方形边长在3cm时,无盖长方体盒子的容积最大588cm3.
故答案为3,588.
(5)
根据无盖长方体盒子的容积的变化,截去的正方形边长在3与4之间时,无盖长方体盒子的容积最大;
当x=3,5时,b(a-2b)2=3.5×(20-2×3.5)2=591.5cm3,
当时,b(a-2b)2=3.25×(20-2×3.25)2=592.3125cm3,
当时,b(a-2b)2=3.375×(20-2×3.375)2=592.5234375cm3,
当剪去图形的边长为3.3cm时,所得的无盖长方体的容积最大,此时无盖长方体的容积是592.548cm3.
因此表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位.
【点睛】
本题考查无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题,掌握无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题是解题关键.
5、(1)0;(2)见详解;(3)1.7
【解析】
【分析】
(1)由题意认真按题目要求测量BD、CE,进行填表即可;
(2)根据题意按照表格描点作图即可;
(3)由题意线段BD是线段CE长的2倍的条件可以转化为一次函数图象,通过数形结合解决问题.
【详解】
解:(1)根据题意测量约0,
故答案为:0;
(2)根据题意画图:
(3)当线段BD是线段CE长的2倍时,得到y=x图象,该图象与(2)中图象的交点即为所求情况,测量得BD长约1.7cm.
故答案为:1.7.
【点睛】
本题考查函数作图和学生函数图象实际意义的理解,同时考查学生由数量关系得到函数关系的转化思想.
数学第二十章 函数综合与测试同步测试题: 这是一份数学第二十章 函数综合与测试同步测试题,共21页。试卷主要包含了函数的图象如下图所示等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试练习: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试练习,共18页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试当堂达标检测题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试当堂达标检测题,共26页。