![2022年强化训练冀教版八年级数学下册第二十章函数定向练习试卷(精选)第1页](http://m.enxinlong.com/img-preview/2/3/12765402/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第二十章函数定向练习试卷(精选)第2页](http://m.enxinlong.com/img-preview/2/3/12765402/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第二十章函数定向练习试卷(精选)第3页](http://m.enxinlong.com/img-preview/2/3/12765402/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
八年级下册第二十章 函数综合与测试课时训练
展开
这是一份八年级下册第二十章 函数综合与测试课时训练,共23页。试卷主要包含了小斌家,函数y=的自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在函数中,自变量的取值范围是( )A. B. C. D.2、如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是( )A. B.C. D.3、汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数.如图描述了、两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )A.消耗1升汽油,车最多可行驶5千米B.车以40千米小时的速度行驶1小时,最少消耗4升汽油C.对于车而言,行驶速度越快越省油D.某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车更省油4、速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:①a=60;②b=2;③c=b+;④若s=40,则b=.其中说法正确的是( )A.①②③ B.①④ C.①② D.①③5、下列各曲线中,不表示y是x的函数的是( )A. B.C. D.6、函数y=中,自变量x的取值范围是( )A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣37、函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.…………小明根据他的发现写出了以下三个命题:①当时,函数图象关于直线对称;②时,函数有最小值,最小值为;③时,函数的值随点的增大而减小.其中正确的是( )A.①② B.①③ C.②③ D.①②③8、小斌家、学校、小川家依次在同一条笔直的街道上,小斌家离学校有2800米,某天,小斌、小川两人分别从自己家中同时出发,相向而行,出发4分钟后,两人在学校相遇,小川继续前行,小斌在学校取好书包后,掉头回家,两人在运动过程中均保持速度不变,两人之间的距离y(米)与小斌出发的时间x(分钟)的关系如图所示(小斌取书包的时间、掉头的时间忽略不计),则下列选项中错误的是( )A.小斌的速度为700m/min B.小川的速度为200m/minC.a的值为280 D.小川家距离学校800m9、函数y=的自变量x的取值范围是( )A.x≠0 B.x≠1 C.x≠±1 D.全体实数10、A,B,C三种上宽带网方式的月收费金额yA(元),yB(元),yC(元)与月上网时间x(小时)的对应关系如图所示.以下有四个推断:①月上网时间不足35小时,选择方式A最省钱;②月上网时间超过55小时且不足80小时,选择方式C最省钱;③对于上网方式B,若月上网时间在60小时以内,则月收费金额为60元;④对于上网方式A,若月上网时间超出25小时,则超出的时间每分钟收费0.05元.所有合理推断的序号是( )A.①② B.①③ C.①③④ D.②③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,加油过程中的常量是________.2、已知函数,那么_________.3、若球体体积为,半径为,则.其中变量是_______、_______,常量是________.4、函数中,自变量x的取值范围是________.5、函数的定义域是 _____.三、解答题(5小题,每小题10分,共计50分)1、小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值:所挂物体质量x/kg012345弹簧长度y/cm182226303438(1)上表所反映的变化过程中的两个变量,______是自变量,______是因变量;(请用文字语言描述)(2)请直接写出y与x的关系式______;(3)当弹簧长度为50cm(在弹簧承受范围内)时,求所挂重物的质量.(写出求解过程)2、一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示)与x之间的函数关系.根据图象进行以下探究:[信息读取](1)甲,乙两地相距______千米,两车出发后______小时相遇;(2)普通列车到达终点共需______小时,普通列车的速度是______千米/小时:[解决问题](3)求动车的速度:(4)求点C的坐标.3、有这样一个问题:探究函数的图象与性质小明根据学习函数的经验,对函数的图象与性质进行了探究:下面是小明的探究过程,请补充完整(1)函数的自变量的取值范围是 (2)下表是与的几组对应值…………求的值(3)如图,在坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象(4)进一步探究发现该函数的性质:当 时,随的增大而增大4、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.5、小华骑电动车从家出发去西安交大,当他骑了一段路时,想起要买一本书,于是原路返回刚经过的新华书店,买到书后继续前往交大,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小华家离西安交大的距离是多少?(2)买到书后,小华从新华书店到西安交大骑车的平均速度是多少?(3)本次去西安交大途中,小华一共行驶了多少米? -参考答案-一、单选题1、C【解析】【分析】由二次根式有意义的条件,可得 解不等式即可得到答案.【详解】解:∵函数中,则∴;故选:C.【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条件,解题的关键是掌握被开方数大于或等于0.2、B【解析】【分析】根据动点P的正方形各边上的运动状态分类讨论△APD的面积即可;【详解】由点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0;当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8;当8≤x≤12时,点P在CB上运动,△APD的面积y=8;当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32;故选B.【点睛】本题主要考查了正方形的性质,动点问题与函数图象结合,准确分析计算是解题的关键.3、B【解析】【分析】根据题意和函数图象可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:A、由图象可知,当车速度超过时,燃油效率大于,所以当速度超过时,消耗1升汽油,车行驶距离大于5千米,故此项不合理,不符合题意;B、车以40千米小时的速度行驶1小时,路程为,,最少消耗4升汽油,此项合理,符合题意;C、对于车而言,行驶速度在时,越快越省油,故此项不合理,不符合题意;D、某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车燃油效率更高,所以更省油,故此项不合理,不符合题意.故选:B.【点睛】本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答.4、D【解析】【分析】①利用“速度=路程÷时间”可求出两车的速度差,结合快车的速度即可求得a值,即可判断①;②利用“时间=两车之间的距离÷两车速度差”可得出b值,由s不确定可得出b值不确定即可判断②;③利用“两车第二次相遇的时间=快车转向时的时间+两车之间的距离÷两车的速度之和”可得出c值,即可判断③;④由②的结论结合s=40可得出b值,即可判定④.【详解】解:①两车的速度之差为80÷(b+2﹣b)=40(km/h),∴a=100﹣40=60,结论①正确;②两车第一次相遇所需时间=(h),∵s的值不确定,∴b值不确定,结论②不正确;③两车第二次相遇时间为b+2+=b+(h),∴c=b+,结论③正确;④∵b=,s=40,∴b=1,结论④不正确.故选:D.【点睛】本题主要考查了一次函数的应用,掌握数形结合思想成为解答本题的关键.5、D【解析】【分析】根据函数的意义进行判断即可.【详解】解:A、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;B、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;C、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;D、图中,对于的每一个取值,可能有两个值与之对应,选项符合题意.故选:D.【点睛】本题主要考查了函数的定义,解题的关键是掌握函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.6、B【解析】【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.【详解】解:∵函数y=,∴,解得:x>﹣3.故选:B.【点睛】本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.7、C【解析】【分析】(1)把,代入 求出、,画出函数图像,函数图象关于直线对称,则横纵坐标交换位置,即可判断①;根据图像可判断②③.【详解】把,代入 得:,画出函数图像如图所示:当时,;当时,,故①错误;由图像可得出:②③正确.故选:C.【点睛】函数的图像与性质,根据表格画函数图像,掌握对称的性质是解题的关键.8、C【解析】【分析】根据路程÷时间求速度可判断A、B;利用小川继续行走的时间×小川的速度求出a的值,可判断C;利用开始 小斌与小川的距离-小斌到学校的距离可判断D.【详解】解:∵小斌家离学校有2800米,出发4分钟后到学校,∴v小斌=,故选项A正确;∵小川家离学校有3600-2800=800米,出发4分钟后到学校,∴v小川=,故选项B正确;小川继续前行,小斌在学校取好书包后,4分钟后掉头回家,小川行走的路程为:200m/min×(8-4)=800m,∴a的值为800m,故选项C不正确;∵小川家离学校有3600-2800=800米,故选项D正确.故选C.【点睛】本题考查行程问题函数图像信息获取与处理,理解图像横纵轴的意义,折点的含义,终点位置的意义,掌握函数图像信息获取与处理的方法,理解图像横纵轴的意义,折点的含义,终点位置的意义是解题关键.9、D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得,所以自变量x的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.10、C【解析】【分析】根据A,B,C三种上宽带网方式的月收费金额yA(元),yB(元),yC(元)与月上网时间x(小时)的图象逐一判断即可.【详解】由图象可知:①月上网时间不足35小时,选择方式A最省钱,说法正确;②月上网时间超过55小时且不足80小时,选择方式B最省钱,故原说法错误;③对于上网方式B,若月上网时间在60小时以内,则月收费金额为60元,说法正确;④对于上网方式A,若月上网时间超出25小时,则超出的时间每分钟收费为:(60﹣30)÷[(35﹣25)×60]=0.05(元),原说法正确;所以所有合理推断的序号是①③④.故选:C.【点睛】本题考查了函数的图象,掌握数形结合的方法是解答本题的关键.二、填空题1、单价【解析】【分析】常量是指在变化过程中,数值始终不变的量【详解】解:加油过程中,单价×数量=总价,此时,单价是常量,数量和金额是变量.故答案为:单价【点睛】本题考查常量的定义,牢记相关的知识点是解题关键.2、【解析】【分析】根据函数的定义即可得.【详解】解:因为,所以,故答案为:.【点睛】本题考查了求函数值,掌握理解函数的概念是解题关键.3、 【解析】【分析】根据函数常量与变量的知识点作答.【详解】∵函数关系式为,∴是自变量,是因变量,是常量.故答案为:,,.【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.4、x≥0【解析】【分析】根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.【详解】∵有意义,∴x≥0.故答案为:x≥0【点睛】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.5、x≠0【解析】【分析】由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可.【详解】解:函数的定义域是:x≠0.故答案为:x≠0.【点睛】本题考查求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.三、解答题1、(1)所挂物体质量,弹簧长度;(2)y=4x+18;(3)8kg【解析】【分析】(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)利用表格中数据的变化进而得出答案;(3)由(2)中关系式,可求当弹簧长度为50cm(在弹簧承受范围内)时,所挂重物的质量.【详解】解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;故答案为:所挂物体质量,弹簧长度;(2)由表格可得:当所挂物体重量为1千克时,弹簧长4厘米;当不挂重物时,弹簧长18厘米,则y与x的关系式为:y=4x+18;故答案为:y=4x+18;(3)当弹簧长度为50cm(在弹簧承受范围内)时,50=4x+18,解得x=8,答:所挂重物的质量为8kg.【点睛】本题考查了函数的表示方法,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.2、(1)1800;4;(2)12;150;(3)300km/h;(4)【解析】【分析】(1)初始时刻y=1800,即为两地距离,相遇时两车距离为0,由图像得到相遇时刻;(2)最后到达的为普通列车,根据路程除以时间可得速度;(3)根据动车4小时到达,利用速度=路程÷时间求解即可;(4)由函数图像可知m时刻是动车到达乙地的时刻,用路程除以速度即可.【详解】(1)由图像可知,甲地与乙地相距1800千米,两车出发后4小时相遇;故答案为:1800,4;(2)由函数图像可知,普通列车12小时到达,则速度为1800÷12=150千米/小时故答案为:12;150;.(3)由题意得:动车的速度为: (km/h);(4),∴,,∴点的坐标为.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.3、 (1)全体实数(2)1(3)图像见解析(4)>2【解析】【分析】(1)根据题目中的函数解析式,可以得到x的取值范围;(2)将x=4代入函数解析式,即可得到y的值;(3)根据表格中的数据,可以画出相应的函数图象;(4)根据函数图象,可以写出当x为何值时,y随x的增大而增大.(1)函数的自变量x的取值范围是全体实数,故答案为:全体实数;(2)当x=4时,,即m的值是1;(3)如下图所示,(4)由图象可得,当x>2时,y随x的增大而增大,故答案为:>2.【点睛】本题考用描点法画函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4、(1)PQ=5cm;(2)t=;(3)S四边形APQB=30﹣5t+t2.【解析】【分析】(1)先分别求出CQ和CP的长,再根据勾股定理解得即可;(2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;(3)由S四边形APQB=S△ACB﹣S△PCQ进行求解即可.【详解】解:(1)由题意得,AP=t,PC=5﹣t,CQ=2t,∵∠C=90°,∴PQ=,∵t=2,∴PQ=,(2)∵∠C=90°,∴当CP=CQ时,△PCQ是等腰三角形,∴5﹣t=2t,解得:t=,∴t=秒时,△PCQ是等腰三角形;(3)由题意得:S四边形APQB=S△ACB﹣S△PCQ===30﹣5t+t2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.5、(1)4800米;(2)450米/分;(3)6800米【解析】【分析】(1)根据函数图象,直接可得小华家到西安交大的路程;(2)根据函数图象求得从新华书店到西安交大的路程和时间,根据速度等于路程除以时间即可求得;(3)根据函数图象可得路程为3段,将其相加即可.【详解】解:(1)根据函数图象,可知小华家到西安交大的路程是4800米;(2)小华从新华书店到西安交大的路程为4800﹣3000=1800米,所用时间为28﹣24=4分钟,小华从新华书店到西安交大骑车的平均速度是1800÷4=450米/分;(3)根据函数图象,小华一共行驶了4800+2×(4000﹣3000)=6800(米).【点睛】本题考查了函数图象,要理解横纵坐标表示的含义以及小华的运动过程,从函数图象中获取信息是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试复习练习题,共23页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题,共21页。试卷主要包含了在函数中,自变量的取值范围是,在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试随堂练习题,共19页。