终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度冀教版八年级数学下册第二十章函数必考点解析试题(精选)

    立即下载
    加入资料篮
    2021-2022学年度冀教版八年级数学下册第二十章函数必考点解析试题(精选)第1页
    2021-2022学年度冀教版八年级数学下册第二十章函数必考点解析试题(精选)第2页
    2021-2022学年度冀教版八年级数学下册第二十章函数必考点解析试题(精选)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十章 函数综合与测试课后作业题

    展开

    这是一份冀教版八年级下册第二十章 函数综合与测试课后作业题,共24页。
    冀教版八年级数学下册第二十章函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图1,在菱形ABCD中,AB=6,∠BAD=120°,点EBC边上的一动点,点P是对角线BD上一动点,设PD的长度为xPEPC的长度和为y,图2是y关于x的函数图象,其中Hab)是图象上的最低点,则a+b的值为(  )A. B. C. D.362、函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.小明根据他的发现写出了以下三个命题:①当时,函数图象关于直线对称;时,函数有最小值,最小值为时,函数的值随点的增大而减小.其中正确的是(       A.①② B.①③ C.②③ D.①②③3、下列各曲线中,不表示yx的函数的是(  )A.  B.C.  D.4、在函数y=中,自变量x的取值范围是 (  )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠45、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则yx之间的函数关系式是(       A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x6、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是(  )A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系D.一个正数x的平方根是yy随着这个数x的变化而变化,yx之间的关系7、甲、乙两车分别从相距280km的AB两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有(       A.1个 B.2个 C.3个 D.4个8、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是(       A.①②③ B.①②④ C.③④ D.①③④9、一辆汽车行驶的路程与行驶时间的关系如图所示,下列说法正确的是(  )A.前3h中汽车的速度越来越快 B.3h后汽车静止不动C.3h后汽车以相同的速度行驶 D.前3h汽车以相同速度行驶10、如图,在边长为4的等边△ABC中,点PA点出发,沿ABCA的方向运动,到达A点时停止.在此过程中,线段AP的长度y随点P经过的路程x的函数图象大致是(  )A. B.C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、函数y中,自变量x的取值范围是 ___.2、在数学综合实践课中,小明和同学对类似八下教科书25页例2的问题进行拓展探索:如图1,一根长为5米的木棍斜靠在一竖直的墙上,为4米,如果木棍的顶端沿墙下滑米,底端向外移动米,下滑后的木棍记为,则满足的等式,即关于的函数解析式为,小明利用画图软件画出了该函数图象如图2,(1)请写出图象上点的坐标(1,______)(2)根据图象,当的取值范围为______时,的周长大于的周长.3、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.4、汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是_____,其中的常量是_____,变量是_____.5、设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为__________,这个关系式中, __________是常量,__________是变量,__________是__________的函数.三、解答题(5小题,每小题10分,共计50分)1、初二年级小王同学坚持环保理念,每天骑自行车上学,学校离家3000米.某天,小王上学途中因自行车发生故障,修车耽误了一段时间后继续骑行,还是按时赶到了学校,如图描述的是他离家的距离S和离家的时间t之间的函数图像,根据图像解决下列问题:(1)修车时间为______分钟:(2)到达学校时共用时间______分钟;(3)小王从离家时到自行车发生故障时,离家的距离S和离家的时间t之间的函数关系式为______定义域为______;(4)自行车故障排除后他的平均速度是每分钟______米.2、在一定限度内(所挂物体重量不过)弹簧挂上物体后会伸长,测得一弹簧长度与所挂物体质量有如下关系:所挂物体质量弹簧长度(1)由表格知,弹簧原长为________,所挂物体每增加弹簧伸长________(2)请写出弹簧长度与所挂物体质量之间的关系式,并指出自变量取值范围.(3)预测当所挂物体质量为时,弹簧长度是多少?(4)当弹簧长度为时,求所挂物体的质量.3、小明某天上午时骑自行车离开家,时回到家,他有意描绘了离家的距离与时间的变化情况(如图所示).(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)时和时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)时到时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?4、小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程(米)和所用时间(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是         米;小明在广场向行人讲解卫生防疫常识所用的时间是         分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)5、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)在上升或下降过程中,无人机的速度为多少?(2)图中a表示的数是        b表示的数是        (3)无人机在空中停留的时间共有        分钟. -参考答案-一、单选题1、A【解析】【分析】从图2知,的最小值,从图1作辅助线知;接下来求出,设交于点,则求出,最后得,所以,选【详解】解:如下图,在边上取点,使得关于对称,连接,得连接,作,垂足为由三角形三边关系和垂线段最短知,有最小值菱形中,中,解得是图象上的最低点此时令交于点由于,在中,,又的长度为,图2中是图象上的最低点,故选:A.【点睛】本题考查动点及最小值问题,解题的关键是在于通过翻折点轴对称),然后利用三角形三边关系及垂线段最短原理,判断出最小值为2、C【解析】【分析】(1)把代入 求出,画出函数图像,函数图象关于直线对称,则横纵坐标交换位置,即可判断①;根据图像可判断②③.【详解】代入 得:画出函数图像如图所示:时,;当时,故①错误;由图像可得出:②③正确.故选:C.【点睛】函数的图像与性质,根据表格画函数图像,掌握对称的性质是解题的关键.3、D【解析】【分析】根据函数的意义进行判断即可.【详解】解:A、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;B、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;C、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;D、图中,对于的每一个取值,可能有两个值与之对应,选项符合题意.故选:D.【点睛】本题主要考查了函数的定义,解题的关键是掌握函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.4、D【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:∵x-3≥0,x≥3,x-4≠0,x≠4,综上,x≥3且x≠4,故选:D.【点睛】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5、D【解析】【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×÷100=0.12(升/千米),y=60-0.12x故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.6、D【解析】【分析】根据函数的定义:在一个变化过程中,如果有两个变量xy,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,yx的函数,由此进行逐一判断即可【详解】解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;D、∵一个正数x的平方根是y,对于每一个确定的xy都有两个值与之对应,不满足函数的关系,故符合题意;故选D.【点睛】本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.7、B【解析】【分析】由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.【详解】解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;乙车行驶280千米需要的时间为:小时,所以甲车返回的速度为:千米/时,故②符合题意;小时,所以 故③符合题意,当乙车行驶2小时时,行驶的路程为:千米,此时甲车行驶1小时,千米,所以两车相距:千米,当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,距离A千米,所以两车相距千米,故④不符合题意;综上:故选B【点睛】本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.8、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.9、B【解析】【分析】根据图象可直接进行排除选项.【详解】解:由图象可知前3小时汽车行驶的路程是曲线,并且路程是缓慢增加,故汽车的速度是越来越小,在3小时到5小时之间,汽车的路程没有发生改变,故可知汽车在此期间是静止不动的,由上述可知,只有B选项正确;故选B.【点睛】本题主要考查函数图象,解题的关键是根据函数图象得到相关信息.10、A【解析】【分析】根据题意,当点从点运动到点时,的长度的增大而增大;当点运动到的中点时,的增大而减小;当点的中点运动到点时,的增大而增大;当点运动到时,的增大而减小,最后减小至0,且时,的值相等,据此判断即可.【详解】解:由题意可知,当点从点运动到点时,的长度的增大而增大;当点运动到的中点时,的增大而减小;且当时,的值最小,故可排除选项与选项当点的中点运动到点时,的增大而增大;当点运动到时,的增大而减小,最后减小至0,且时,的值相等,故选项符合题意,选项不合题意.故选:A.【点睛】本题考查了动点问题的函数图象,三角形的面积等知识,解题的关键是熟练掌握数形结合思想方法.二、填空题1、x≠1.【解析】【分析】根据分母不能为0,可得x−1≠0,即可解答.【详解】解:根据题意得:x−1≠0,解得:x≠1.故答案是:x≠1.【点睛】本题考查了函数自变量的取值范围,解决本题的关键是明确分母不能为0.2、          【解析】【分析】(1)把的横坐标代入,求解点的纵坐标即可;(2)先分别求解的周长,的周长,可得:当的周长的周长时,即,再画出直线的图象,直线过点,观察函数图象可得答案.【详解】解:(1)当时,故点的坐标为故答案为1;(2)由得:由题意得:的周长的周长则当的周长的周长时,由(1)知,当时,,当时,则在原图象的基础上,画出直线的图象如下,直线过点从图象看,当时,,即的周长大于的周长,故答案为:【点睛】本题考查的是动态问题的函数图象,二次根式的化简,理解图象上点的横坐标与纵坐标的含义,利用两个函数图象的交点坐标解决有关不等关系问题是解题的关键.3、1760【解析】【分析】根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度.【详解】解:小明离家2分钟走了160米,∴小明初始速度为160÷2=80米/分;小明返回家速度为80×2=160米/分,妈妈继续行进速度80÷2=40米/分;小明在家换衣服3分钟时间,妈妈走了40×3=120米,设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,则有160t=1200+120+40tt=11,∴小明离家距离为11×160=1760米.故答案为:1760米.【点睛】本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据.4、     Q=40-5t     40,5     Qt【解析】5、     s=60t     60     ts     s     t【解析】三、解答题1、(1)5分钟;(2)20分钟;(3);(4)300.【解析】【分析】(1)线段AB表示修车时段,时间为5分钟;(2)根据C点横坐标为20,得出到达学校时共用时间;(3)观察图象,获取有关信息:线段OA表示故障前行使情况:10分钟行使了1500米;(4)根据线段BC表示修车后行使情况:5分钟行使了1500米,即可求出行驶速度.【详解】解:(1)线段AB表示修车时段,时间为5分钟;故答案为:5;(2)利用C点横坐标为20,得出从家到学校用时20分钟;故答案为:20;(3)由图象可知:小王从离家时到自行车发生故障时,10分钟行使了1500米,故速度为150米/分,图象过原点,所以函数关系式为S=150t();故答案为:(4)线段BC表示修车后行使情况:5分钟行使了1500米,故速度为1500÷5=300(米/分);故答案为 :300.【点睛】此题考查一次函数及其图象的应用,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势,能够从图象中获取相关信息是关键.2、(1)12,0.5;(2);(3);(4)【解析】【分析】(1)由表格可得弹簧原长以及所挂物体每增加弹簧伸长的长度;(2)由(1)中的结论可求出弹簧长度与所挂物体质量之间的函数关系式;(3)令,求出y的值即可;(4)令,求出x的值即可.【详解】解:(1)由表格可知,所挂物体质量时,弹簧长度为∴弹簧原长为∴所挂物体每增加弹簧伸长(2)由(1)可知:弹簧长度与所挂物体质量之间的函数关系式为∵所挂物体质量不过∴自变量x的取值范围是(3)将代入,得∴当所挂物体质量为时,弹簧长度是(4)将代入,得解得:∴当弹簧长度为时,物体质量是【点睛】本题考查了函数的关系式及函数值,解题的关键是根据图表信息解决问题.3、(1)时间、离家的距离,自变量是时间,因变量是离家的距离;(2)15千米、30千米;(3)12:00,30千米;(4)15千米,(5)12:00-13:00;(6)15千米/小时.【解析】【分析】(1)根据图象的x轴和y轴即可确定表示了哪两个变量的关系;(2)由函数图像可以看出10时的时候他离家的距离是15千米,12时的时候他离家30千米;(3)首先根据图象找到离家最远的距离,由此即可确定他到达离家最远的地方是什么时间,离家多远;(4)根据图象首先找到时间为10时和12时离家的距离,然后作差即可;(5)如果休息,那么距离没有增加,由此就可以确定在哪段时间内休息,并吃午餐;(6)根据返回时所走路程和使用时间即可求出返回时的平均速度.【详解】解:(1)图像表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量; (2)由函数图像可以看出10时的时候他离家的距离是15千米,13时的时候他离家30千米;(3)由图象看出他到达离家最远的地方是在12-13时,离家30千米;(4)由图象看出10时到12时他行驶了30-15=15千米; (5)由图象看出12:00~13:00时距离没变且时间较长,得他可能在12时到13时间内休息,并吃午餐;(6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时).【点睛】此题考查了函数的图象,解题关键在于看懂图中数据表示的实际意义.4、(1)1280,6;(2)小华的速度为米/分钟,小明从广场跑去学校的速度为120米/分钟;(3)7:51;(4)在保证不迟到的情况下,小明最多可以讲解1次【解析】【分析】(1)根据函数图象,找出小明家和学校的距离是1280米,计算出小明在广场向行人讲解卫生防疫常识所用的时间即可;(2)根据速度=路程÷时间,分别求小华的速度和小明从广场跑去学校的速度;(3)根据函数图象可得当小华离家路程,根据速度=路程÷时间,算出用的时间,加上出分时间,由此解答即可;(4)根据函数图象可得,小明之前的速度,讲解时间,由此推断即可.【详解】(1)解:由图象可知,小明家和学校的距离是1280米;小明在广场向行人讲解卫生防疫常识所用的时间是: (分钟);故答案为:1280;6;(2)解:小华的速度为:(米/分钟),小明从广场跑去学校的速度为:(米/分钟);(3)解:(分钟),(分钟),答:小华在广场看到小明时是7:51;(4)解:(分钟),(分钟),因为所以,在保证不迟到的情况下,小明最多可以讲解1次.【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.5、(1)无人机的速度为25米/分;(2)2;15;(3)9.【解析】【分析】(1)根据无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,进行求解即可;(2)根据(1)中求得的结果,由路程=速度×时间进行求解即可;(3)根据函数图像可知无人机空中停留的分为第a-6分钟和第7-12分钟,由此求解即可.【详解】解:(1)∵无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,∴无人机的速度为75-50=25米/分;(2)由题意得:故答案为:2,15;(3)由题意得:无人机停留的时间=6-2+12-7=9分钟,故答案为:9【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够正确读懂函数图像. 

    相关试卷

    数学八年级下册第二十章 函数综合与测试复习练习题:

    这是一份数学八年级下册第二十章 函数综合与测试复习练习题,共22页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。

    冀教版八年级下册第二十章 函数综合与测试练习题:

    这是一份冀教版八年级下册第二十章 函数综合与测试练习题,共18页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。

    2020-2021学年第二十章 函数综合与测试课后作业题:

    这是一份2020-2021学年第二十章 函数综合与测试课后作业题,共21页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map