初中数学冀教版八年级下册第二十章 函数综合与测试同步测试题
展开
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步测试题,共22页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、中考体育篮球运球考试中,测试场地长20米,宽7米,起点线后5米处开始设置10根标志杆,每排设置两根,各排标志杆底座中心点之间相距1米,距两侧边线3米,假设某学生按照图1路线进行单向运球,运球行进过程中,学生与测试老师的距离y与运球时间x之间的图象如图2所示,那么测试老师可能站在图1中的位置为( )A.点A B.点B C.点C D.点D2、小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h(米)与小强出发后的时间t(分钟)的函数关系如图所示,下列结论正确的是:( )A.爷爷比小强先出发20分钟B.小强爬山的速度是爷爷的2倍C.表示的是爷爷爬山的情况,表示的是小强爬山的情况D.山的高度是480米3、周六早上,小王和小李相约晨跑,他们约定从各自的家出发,在位于同一直线上的公园大门见面,小王先出发,途中等了1分钟红绿灯,然后以之前的速度继续向公园大门前行,小李比小王晚1分钟出发,结果比小王早1分钟到达,两人均匀速行走.下图是两人距离公园的路程与小王行走的时间之间的函数关系图象,若点A的坐标是,则下列说法中,错误的是( )A.点A代表的实际意义是小李与小王相遇 B.当小李出发时,小王与小李相距120米C.小李家距离公园大门的路程是560米 D.小李每分钟比小王多走20米4、从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是( )v(m/s)25155﹣5t(s)0123A.v=25t B.v=﹣10t+25 C.v=t2+25 D.v=5t+105、当时,函数的值是( )A. B. C.2 D.16、EF是BC的垂直平分线,交BC于点D,点A是直线EF上一动点,它从点D出发沿射线DE方向运动,当减少时,增加,则y与x的函数表达式是( )A. B. C. D.7、甲、乙两辆摩托车分别从A、B两地出发相向而行,图中、分别表示两辆摩托车与A地的距离与行驶时间之间的函数关系,则下列说法:①A、B两地相距;②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢;④两车出发后,经过0.3小时,两车相遇.其中正确的有( )A.4个 B.3个 C.2个 D.1个8、油箱中存油60升,油从油箱中均匀流出,流速为0.3升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( )A.Q=0.3t B.t=60-0.3Q C.t=0.3Q D.Q=60-0.3t9、根据如图所示的程序计算函数的值,若输入的值为1,则输出的值为2;若输入的值为,则输出的值为( ).A. B. C.4 D.810、甲、乙两人骑车分别从A、B两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B地后停留20min 再以原速返回A地,当两人到达A地后停止骑行.设甲出发x min后距离A地的路程为y km.图中的折线表示甲在整个骑行过程中y与x的函数关系.在整个骑行过程中,两人只相遇了1次,乙的骑行速度(单位:km/min)可能是( )A.0.1 B.0.15 C.0.2 D.0.25第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行____________米.2、设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为__________,这个关系式中, __________是常量,__________是变量,__________是__________的函数.3、汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是_____,其中的常量是_____,变量是_____.4、河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:行驶路程s(千米)050100150200…剩余油量Q(升)4035302520…则该汽车每行驶100千米的耗油量为 _____升.5、用解析式法表示函数时需要注意什么?(1)函数解析式是一个_______;(2)是用含_______的式子表示函数;(3)要确定自变量的_______.三、解答题(5小题,每小题10分,共计50分)1、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6立方米时,水费按a元/立方米收费;每户每月用水量超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分按c元/立方米收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份用水量x(m3)收费y(元)357.54927(1)求a、c的值;(2)写出每月用水量x不超过6立方米和超过6立方米时,水费y与用水量x之间的关系式;(3)已知某户5月份的用水量为8立方米,求该用户5月份的水费.2、有这样一个问题:探究函数y=的图象与性质.小东根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是 ;(2)列表:x…﹣5﹣4﹣3﹣2﹣1﹣0.500.21.822.534n67…y…﹣1m﹣1.5﹣2﹣3﹣4﹣6﹣7.57.564321.51.21…求出表中m的值为 ,n的值为 .描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象,请你把图象补充完整;(3)观察发现:结合函数的图象,写出该函数的两条性质:① ;② .3、甲、乙两车从城出发沿一条笔直公路匀速行驶至城,在整个行驶过程中,甲、乙两车离开城的距离与甲车行驶的时间之间的函数关系如图所示.(1)、两城相距_____千米,乙车比甲车早到______小时;(2)求出点坐标;(3)两车都在行驶的过程中,当甲、乙两车相距40千米时,_____.4、如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→ A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒lcm,点Q的速度为每秒2cm, a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒lcm,图②是点P出发x秒后△APD的面积S(cm)与x(秒)的函数关系图象.(1)根据图象得a= ;b= ;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式,井写出自变量取值范围.5、购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x变化.指出其中的常量与变量,自变量与函教,并写出表示函数与自变量关系的式子. -参考答案-一、单选题1、B【解析】【分析】由题意根据图2可得学生与测试老师的距离的变化情况,进而即可作出判断.【详解】解:根据图2得:学生与测试老师的距离先快速减小,然后短时间缓慢减小,然后再快速减小,又短时间缓慢增大,然后再快速减到最小,又开始快速增大,再减小,而且开始的时候与测试老师的距离大于快结束的时候,由此可得测试老师可能站在图1中的位置为点B.故选:B.【点睛】本题考查动点问题的函数图象,利用观察学生与测试老师之间距离的变化关系得出函数的增减性是解题的关键.2、B【解析】【分析】由爷爷先出发,可以判断C,再根据图象上点的坐标含义分别计算出爷爷与小强的爬山速度,从而可判断A,B,根据图象上点的坐标含义同时可判断D,从而可得答案.【详解】解: 爷爷先出发一段时间后小强再出发,分别表示小强与爷爷的爬山信息,故C不符合题意;由的图象可得:小强爬山的速度为:米/分,由的图象可得:爷爷爬山的速度为:米/分,所以分钟,故A不符合题意;小强爬山的速度是爷爷的2倍,故B符合题意;由图象可得:山的高度是720米,故D不符合题意;故选B【点睛】本题考查的是从函数图象中获取信息,掌握“函数图象上点的坐标含义”是解本题的关键.3、C【解析】【分析】根据函数图象可得:小王和小李的函数直线相交,表示小李追上小王,恰好相遇,可判断A选项;根据小王从开始到目的地一共用时8分钟,中间停留1分钟,用时7分钟,路程为420米,可得小王的速度,小李到目的地用时6分钟,从A点到终点用时1.5分钟,路程为120米,可得小李的速度,然后根据路程、速度、时间的关系可得小李家离公园大门的路程,判断C选项;由两人的速度可判断D选项;最后依据两人的行走过程判断B选项即可.【详解】解:根据函数图象可得:小王和小李的函数直线相交,表示小李追上小王,恰好相遇,故A选项正确;由题意,小王从开始到目的地一共用时8分钟,中间停留1分钟,用时7分钟,小王的速度为:(米/分);小李到目的地用时:(分钟),从A点到终点用时:(分钟),路程为120米,∴小李的速度为:(米/分);总路程为:(米),∴小李家离公园大门的路程为480米,故C选项错误;,小李每分钟比小王多走20米,故D选项正确;当小李出发时,小王已经出发1分钟,走过的路程为:(米),剩余路程为:(米),小李距离目的地路程为480(米),两人相距:(米),故B选项正确;综合可得:C选项错误,A、B、D正确,故选:C.【点睛】题目主要考查根据实际行走函数图象获取信息,利用速度、时间、路程的关系结合图象求解是解题关键.4、B【解析】【分析】根据表格中的数据,把对应的数据代入函数关系式中进行求解即可得到答案.【详解】解:A、当时,,不满足,故此选项不符合题意;B、当时,,满足,当时,,满足,当时,,满足,当时,,满足,故此选项符合题意;C、当时,,不满足,故此选项符合题意;D、当时,,不满足,故此选项符合题意;故选B.【点睛】本题主要考查了用表格表示变量间的关系,解题的关键在于能够熟练掌握用表格表示变量间的关系.5、D【解析】【分析】把代入计算即可.【详解】解:把代入,得,故选D.【点睛】本题考查的是函数值的求法,函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.6、B【解析】【分析】根据垂直平分线的性质可得,,根据题意列出函数关系式即可【详解】 EF是BC的垂直平分线,是的角平分线设,即当减少时,则,增加,则故选B【点睛】本题考查了垂直平分线的性质,三角形内角和定理,列函数关系式,掌握垂直平分线的性质,等腰三角形三线合一是解题的关键.7、B【解析】【分析】根据从B到A共行驶的路程可判断①;求出乙车行驶时间,甲车行驶时间,根据减法求出时间差可判断②;根据时间与路程,求出甲乙两车的速度,根据减法求出速度差可判断③;设两相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,根据甲乙共走全程列方程,求出时间t可判断④.【详解】解:乙从B地到A共行走24km,故①A、B两地相距正确; 乙摩托车从B到A地用0.5h,甲摩托车从A地到B地用0.6h,∴0.6-0.5=0.1h,故②甲车比乙车行完全程多用了0.1小时正确;甲摩托车行驶的速度为24÷0.6=40km/h,乙摩托车行驶的速度为24÷0.4=48km/h,∴48-40=8km/h,故③甲车的速度比乙车慢正确;设两车相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,∴40t+48t=24,解得h,故④两车出发后,经过0.3小时,两车相遇不正确.故选择B.【点睛】本题考查从行程图像获取信息和处理信息,看懂函数图像,列一元一次方程,时间差,速度差,掌握相关知识是解题关键.8、D【解析】【分析】根据油箱中剩余油量=总存油量-流出的油量,列出函数关系式即可.【详解】解:根据题意:油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是:,故选:D.【点睛】本题考查了列函数解析式,关键是正确理解题意,找出题目中的等量关系.9、A【解析】【分析】输入,则有;输入,则有,将代数式的值代入求解即可.【详解】解:输入,则有;输入,则有;故选A.【点睛】本题考查了程序流程图与代数式求值.解题的关键在于正确求解代数式的值.10、D【解析】【分析】由函数图象可求出甲、乙骑行的时间,根据题意和路程÷时间=速度可求出乙的最小速度即可求解.【详解】解:由函数图象知,A、B两地的距离为25km,甲往返的时间为50+50+20=120(min),∵两人到达A地后停止骑行,且在整个骑行过程中,两人只相遇了1次,∴乙的骑行的速度至少为25÷120= (km/min),∵>0.2,<0.25,∴乙的骑行速度可能是0.25km/min,故选:D.【点睛】本题考查一次函数的应用,理解题意,准确从图象中获取有效信息是解答的关键.二、填空题1、50【解析】【分析】根据总路程÷回家用的时间即可求解.【详解】解:小明回家用了15-5=10分钟,总路程为500,故小明回家的速度为:500÷10=50(米/分),故答案为50.【点睛】本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.2、 s=60t 60 t和s s t【解析】略3、 Q=40-5t 40,5 Q,t【解析】略4、10【解析】【分析】根据表格中两个变量的变化关系得出函数关系式即可.【详解】解:根据表格中两个变量的变化关系可知,行驶路程每增加50千米,剩余油量就减少5升,所以行驶路程每增加100千米,剩余油量就减少10升,故答案为:10.【点睛】本题考查函数的表示方法,理解表格中两个变量的变化规律是正确解答的前提.5、 等式 自变量 取值范围【解析】略三、解答题1、(1)a=1.5,c=6;(2)时,,时,;(3)该用户5月份的水费为21元.【解析】【分析】(1)根据题意列出方程组,解出即可求解;(2)分时和当时,列出函数关系式,即可求解;(3)根据 ,将 代入,即可求解.【详解】解:(1)根据题意得: ,解得: ;(2)当时,,当时,;(3)∵ ,∴该用户5月份的水费(元).【点睛】本题主要考查了二元一次方程组的应用,列函数关系式,求函数值,明确题意,准确得到等量关系是解题的关键.2、(1)x≠1;(2)2,5,图象见解析;(3)①图象是中心对称图形,对称中心的坐标是(1,0);②当x>1时,y随x的增大而减小(答案不唯一).【解析】【分析】(1)根据分母不为0即可得出关于x的不等式,解之即可求解;(2)将x=4代入函数解析式即可求出m的值,将y=1.5代入函数解析式即可求出n的值;然后用平滑曲线连线即可画出函数图象;(3)观察函数图象,从增减性及对称性得出结论即可.【详解】(1)由题意得:x-1≠0,解得:x≠1,故答案为:x≠1;(2)当x=4时,m=,当y=1.5时,则1.5=,解得n=5,描点、连线画出函数图象如图,故答案为:2,5;(3)观察函数图象发现:①该图象是中心对称图形,对称中心的坐标是(1,0),②当x>1时,y随x的增大而减小.答案不唯一.【点睛】本题考查了反比例函数图象上点的坐标特征,函数自变量取值范围及反比例函数的性质,解题关键是理解题意,学会利用图象法解决问题.3、 (1)300千米,1小时(2)(3)或【解析】【分析】(1)根据图象,即可求解;(2)根据图象,可得乙车在点追上甲车,再求出两车的速度,然后设甲车出发小时后,乙车追上甲车,可得,解出即可求解;(3)分两种情况讨论,即可求解.(1)解:由图象可得,,两城相距300千米,乙车比甲车早到(小时);(2)解:由图象可得,乙车在点追上甲车,甲车的速度为(千米/时),乙车的速度为(千米/时),设甲车出发小时后,乙车追上甲车,,解得,∴(千米),∴点;(3)解:根据题意得:当乙车没有追上甲车前,甲、乙两车相距40千米时,,解得: ;当乙车超过甲车后,甲、乙两车相距40千米时,,解得:;综上所述,当甲、乙两车相距40千米时,或.【点睛】本题主要考查了函数图象,从函数图象获取准确信息,并利用数形结合思想解答是解题的关键.4、(1)a=6;b=2;(2)y1=2x-6(6≤x≤17),y2=22-x(6≤x≤22)【解析】【分析】(1)先判断出P改变速度时是在AB上运动,由此即可求出改变速度的时间和位置,从而求出a,再根据在第8秒P的面积判断出此时P运动到B点,即可求出b;(2)根据P和Q的总路程都是CD+BC+AB=28cm,然后根据题意进行求解即可.【详解】解:(1)∵当P在线段AB上运动时,,∴当P在线段AB上运动时,△APD的面积一直增大,∵四边形ABCD是矩形,∴AD=BC=10cm,∴当P在线段AB上运动时,△APD的面积的最大值即为P运动到B点时,此时,由函数图像可知,当P改变速度时,此时P还在AB上运动,∴,即,解得,∴,∴又由函数图像可知当P改变速度之后,在第8秒面积达到40cm2,即此时P到底B点∴,∴,故答案为:6,2;(2)由(1)得再第6秒开始改变速度,∴改变速度时,P行走的路程为6cm,Q行走的路程为12cm,∵Q和P的总路程都为CD+BC+AB=28cm,∴,【点睛】本题主要考查了从函数图像上获取信息,解题的关键在于能够准确根据函数图像判断出P点在改变速度时是在AB上运动.5、常量0.2,变量x,y,自变量x,函数y,.【解析】【分析】根据总价=单价×数量,可得函数关系式.再根据函数的有关定义解答即可.【详解】解:由题意得:(x是正整数),y是x的函数,∴常量0.2,变量x,y,自变量x,函数y.【点睛】主要考查了常量与变量.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试练习题,共18页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。
这是一份2020-2021学年第二十章 函数综合与测试课后作业题,共21页。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课堂检测,共22页。试卷主要包含了下列图象表示y是x的函数的是,在函数中,自变量的取值范围是等内容,欢迎下载使用。