初中数学冀教版八年级下册第二十章 函数综合与测试课后复习题
展开这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后复习题,共19页。试卷主要包含了下列图象表示y是x的函数的是,函数中,自变量x的取值范围是,在下列图象中,是的函数的是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,打开进水口注水时,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示,下列说法错误的是:( )
A.该游泳池内开始注水时已经蓄水100m3
B.每小时可注水190m3
C.注水2小时,游泳池的蓄水量为380m3
D.注水2小时,还需注水100m3,可将游泳池注满
2、已知一个等腰三角形的腰长为x,底边长为y,周长是10,则底边y关于腰长x之间的函数关系式及定义域为( )
A.y=10﹣2x(5<x<10) B.y=10﹣2x(2.5<x<5)
C.y=10﹣2x(0<x<5) D.y=10﹣2x(0<x<10)
3、小明家到学校5公里,则小明骑车上学的用时t与平均速度v之间的函数关系式是( )
A. B. C. D.
4、下列图象表示y是x的函数的是( )
A. B. C. D.
5、下列图象表示的两个变量间的关系中,y不是x的函数的是( )
A. B.
C. D.
6、下列各图表示y是x的函数的图象是( )
A. B.
C. D.
7、函数中,自变量x的取值范围是( )
A. B.且 C. D.且
8、在下列图象中,是的函数的是( )
A. B.
C. D.
9、A,B,C三种上宽带网方式的月收费金额yA(元),yB(元),yC(元)与月上网时间x(小时)的对应关系如图所示.以下有四个推断:
①月上网时间不足35小时,选择方式A最省钱;
②月上网时间超过55小时且不足80小时,选择方式C最省钱;
③对于上网方式B,若月上网时间在60小时以内,则月收费金额为60元;
④对于上网方式A,若月上网时间超出25小时,则超出的时间每分钟收费0.05元.
所有合理推断的序号是( )
A.①② B.①③ C.①③④ D.②③④
10、从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是( )
v(m/s) | 25 | 15 | 5 | ﹣5 |
t(s) | 0 | 1 | 2 | 3 |
A.v=25t B.v=﹣10t+25 C.v=t2+25 D.v=5t+10
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是__________,y是x的__________.
如果当x=a时,y=b,那么b叫做当自变量的值为a时的__________.
2、已知三角形底边长为4,高为,三角形的面积为,则与的函数关系式为______.
3、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;
4、像y=0.5x+10这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的__________.
5、甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发后步行的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了22.5分钟;
③乙用9分钟追上甲;
④乙到达终点时,甲离终点还有270米.
其中正确的结论有____________.(写出所有正确结论的序号)
三、解答题(5小题,每小题10分,共计50分)
1、如果,如;;……那么________.
2、一个容积为240升的水箱,安装有A、B两个注水管,注水过程中A水管始终打开,B水管可随时打开或关闭,两水管的注水速度均为定值,当水箱注满时,两水管自动停止注水.
(1)如图是某次注水过程中水箱中水量y(升)与时间x(分)之间的函数图象.
①在此次注满水箱的过程中,A水管注水 分,B水管注水 分.
②分别求A、B两水管的注水速度.
(2)若仅用12分钟将此空水箱注满,B水管应打开几分钟?
(3)若同时打开A、B两注水管,且每隔2分钟B水管自动关闭1分钟,注满此空水箱需要几分钟?
3、假设圆锥的高是6cm,当圆锥的底面半径由小到大变化时,圆锥的体积随着底面半径而变化,(圆锥的体积公式:V=πr2h,其中r表示底面半径,h表示圆锥的高)
(1)在这个变化过程中,自变量是______________,因变量是_____________.
(2)如果圆锥底面半径为r(cm),那么圆锥的体积V(cm3)与r(cm)的关系式为_________.
(3)当r由1cm变化到10cm时,V由__________cm3变化到__________cm3.
4、植物呼吸作用受温度影响很大,观察如图,回答问题:
(1)此图反映的自变量和因变量分别是什么?
(2)温度在什么范围内时豌豆苗的呼吸强度逐渐变强?在什么范围内逐渐减弱?
(3)要使豌豆呼吸作用最强,应控制在什么温度左右?
5、梯形的上底长,高,下底长大于上底长但不超过.写出梯形面积S关于x的函数解析式及自变量x的取值范围.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据图象中的数据逐项判断即可解答.
【详解】
解:A、由图象可知,当t=0时,y=100,即该游泳池内开始注水时已经蓄水100m3,正确,故选项A不符合题意;
B、由(380-100)÷2=140(m3),即每小时可注水140m3,故选项B错误,符合题意;
C、由图可知,注水2小时,游泳池的蓄水量为380m3,正确,故选项C不符合题意;
D、由图象可知,480-380=100(m3),即注水2小时,还需注水100m3,可将游泳池注满,正确,不符合题意,
故选:B.
【点睛】
本题考查一次函数的应用,能从图象中获取有效信息是解答的关键.
2、B
【解析】
【分析】
根据等腰三角形的定义即三角形的周长公式列出底边y关于腰长x之间的函数关系式,根据三角形的三边关系以及底边大于0,列出不等式组,进而求得定义域.
【详解】
一个等腰三角形的腰长为x,底边长为y,周长是10,
即
即
解得
即
解得
底边y关于腰长x之间的函数关系式为
故选B
【点睛】
本题考查了等腰三角形的定义,三角形的三边关系,函数解析式,掌握以上知识是解题的关键.
3、D
【解析】
【分析】
根据速度,时间与路程的关系得出,变形即可.
【详解】
解:根据速度,时间与路程的关系得
∴.
故选D.
【点睛】
本题考查列函数关系式,掌握速度,时间与路程的关系得出是解题关键.
4、D
【解析】
【分析】
根据函数的定义,按照一一对应的原则去判断即可. 当任意一个都有唯一的一个与之对应,则称是的函数.
【详解】
当任意一个都有唯一的一个与之对应,则称是的函数.
由图象可知:A,B,C选项都不符合题意,
D选项符合题意.
故选D.
【点睛】
本题考查了函数的图像表示法,正确理解变量之间的一一对应思想是解题的关键.
5、D
【解析】
【分析】
根据一个x值只能对应一个y值判断即可;
【详解】
根据一个x值只能对应一个y值可知D不是y不是x的函数;
【点睛】
本题主要考查了函数图像的判断,准确分析判断是解题的关键.
6、D
【解析】
【详解】
解:A、不是的函数的图象,此项不符题意;
B、不是的函数的图象,此项不符题意;
C、不是的函数的图象,此项不符题意;
D、是的函数的图象,此项符合题意;
故选:D.
【点睛】
本题考查了函数,熟记函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)是解题关键.
7、B
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式进行计算即可得解.
【详解】
解:根据题意得,x-2≥0且x−3≠0,
解得且.
故选:B.
【点睛】
本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
8、D
【解析】
【分析】
设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.
【详解】
解:A、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项A不符合题意;
B、对于x的每一个确定的值,y可能会有多个值与其对应,不符合函数的定义,故选项B不符合题意;
C、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项C不符合题意;
D、对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义,故选项D符合题意.
故选:D.
【点睛】
本题主要考查了函数的定义.解题的关键是掌握函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.
9、C
【解析】
【分析】
根据A,B,C三种上宽带网方式的月收费金额yA(元),yB(元),yC(元)与月上网时间x(小时)的图象逐一判断即可.
【详解】
由图象可知:
①月上网时间不足35小时,选择方式A最省钱,说法正确;
②月上网时间超过55小时且不足80小时,选择方式B最省钱,故原说法错误;
③对于上网方式B,若月上网时间在60小时以内,则月收费金额为60元,说法正确;
④对于上网方式A,若月上网时间超出25小时,则超出的时间每分钟收费为:(60﹣30)÷[(35﹣25)×60]=0.05(元),原说法正确;
所以所有合理推断的序号是①③④.
故选:C.
【点睛】
本题考查了函数的图象,掌握数形结合的方法是解答本题的关键.
10、B
【解析】
【分析】
根据表格中的数据,把对应的数据代入函数关系式中进行求解即可得到答案.
【详解】
解:A、当时,,不满足,故此选项不符合题意;
B、当时,,满足,
当时,,满足,
当时,,满足,
当时,,满足,故此选项符合题意;
C、当时,,不满足,故此选项符合题意;
D、当时,,不满足,故此选项符合题意;
故选B.
【点睛】
本题主要考查了用表格表示变量间的关系,解题的关键在于能够熟练掌握用表格表示变量间的关系.
二、填空题
1、 自变量 函数 函数值
【解析】
略
2、
【解析】
【分析】
根据三角形面积公式可得结果.
【详解】
解:由题意,
故答案为:.
【点睛】
本题考查了三角形的面积公式,根据题意,找到所求量的等量关系是解决问题的关键.
3、V=100h
【解析】
【分析】
根据体积公式:体积=底面积×高进行填空即可.
【详解】
解:V与h的关系为V=100h;
故答案为:V=100h.
【点睛】
本题主要考查了列函数关系式,题目比较简单.
4、解析式
【解析】
略
5、①②③④
【解析】
【分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由图可得,
甲步行的速度为:180÷3=60米/分,故①正确,
乙走完全程用的时间为:1800÷(12×60÷9)=22.5(分钟),故②正确,
乙追上甲用的时间为:12−3=9(分钟),故③正确,
乙到达终点时,甲离终点距离是:1800−(3+22.5)×60=270米,故④正确,
故答案为:①②③④.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三、解答题
1、####
【解析】
【分析】
由,计算得到,观察得到,由此将原式化简计算即可.
【详解】
解:∵
∴
∴
∴
=
=
故答案为:
【点睛】
本题考查函数的概念,牢记知识点并灵活应用是解题关键.
2、(1)①16,8;②6升/分,18升/分;(2);(3)13
【解析】
【分析】
(1)①观察函数图像可知,在0-8分钟内,只有A水管打开,8-16分钟内,A水管和B水管同时打开,由此进行求解即可;
②先根据根据函数图像可知在0-8分钟内,只有A水管注水,一共注水48升,求出A水管的注水速度,然后求出16分钟内A水管一共注水=6×16=96升,从而得到B水管在8-16分钟内注水=240-96=144升,由此即可求出B水管的注水速度;
(2)设B水管应该打开x分钟,然后根据题意列出方程求解即可;
(3)先求出打开A水管3分钟和B水管2分钟的注水量为升,由,则可以得出需要循环上述过程四次需用12分钟,然后求出剩余需要的时间即可得到答案.
【详解】
解:(1)①观察函数图像可知,在0-8分钟内,只有A水管打开,8-16分钟内,A水管和B水管同时打开,
∴A水管注水16分钟,B水管注水8分钟,
故答案为:16;8;
②根据函数图像可知在0-8分钟内,只有A水管注水,一共注水48升,
∴A水管的注水速度=48÷8=6升/分;
∴16分钟内A水管一共注水=6×16=96升,
∴B水管在8-16分钟内注水=240-96=144升,
∴B水管的注水速度=144÷8=18升/分
(2)设B水管应该打开x分钟,
则由题意得:,
解得,
∴B水管应该打开分钟,
答:B水管应该打开分钟;
(3)打开A水管3分钟和B水管2分钟的注水量为升,
∵,
∴注满水箱可以打开A水管3分钟和B水管2分钟循环四次,
∴循环四次花费的时间分,
∴循环四次后还要注水的量为24升,
∵分,
∴还需要注水的时间为1分,
∴一共需要注水的时间=12+1=13分,
答:注满此空水箱需要13分钟.
【点睛】
本题主要考查了从函数图像获取信息进行求解,解题的关键在于能够准确读懂函数图像.
3、(1)圆锥的底面半径,圆锥的体积;(2)V=2πr2;(3)2π;200π.
【解析】
【分析】
(1)圆锥的体积随着底面半径的变化而变化,于是圆锥的底面半径为自变量,圆锥的体积为因变量;
(2)由圆锥的体积公式:V=π•r2•h,h=6,可得函数关系式;
(3)根据函数关系式,求出当r=1cm和r=10cm时的体积V即可.
【详解】
解:(1)由于圆锥的体积随之底面半径的变化而变化,因此圆锥的底面半径为自变量,圆锥的体积为因变量,
故答案为:圆锥的底面半径,圆锥的体积;
(2)当h=6时,由圆锥的体积公式:V=π•r2•h可得,
由圆锥的体积公式:V=π•r2•h可得,
V=2πr2,
故答案为:V=2πr2;
(3)当r=1cm时,V=2π(cm3),
当r=10cm时,V=2π×102=200π(cm3),
故答案为:2π,200π.
【点睛】
本题考查变量之间的关系,函数关系式,理解函数的意义,掌握圆锥的体积的计算方法是正确解答的前提.
4、(1)此图反映的自变量和因变量分别是温度和呼吸作用强度;(2)温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右)
【解析】
【分析】
(1)根据函数图象即可得到结论;
(2)根据图象中提供的信息即可得到结论;
(3)根据图象中提供的信息即可得到结论.
【详解】
解:(1)此图反映的自变量是温度,因变量是呼吸作用强度;
(2)由图象知,温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;
(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右).
【点睛】
本题考查了常量和变量,函数图象,正确的识别图象是解题的关键.
5、
【解析】
【分析】
根据梯形的面积公式求解即可.
【详解】
解:∵梯形面积=(上底+下底)×高,
∴,
整理得:,,
∴解析式为:,.
【点睛】
本题考查列函数表达式,理解函数的定义,掌握基本公式是解题关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试复习练习题,共23页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中第二十章 函数综合与测试同步达标检测题,共23页。试卷主要包含了函数中,自变量x的取值范围是,当时,函数的值是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题,共23页。试卷主要包含了小明家等内容,欢迎下载使用。