终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学(理数)一轮复习练习题:8.7《圆锥曲线的综合问题》(教师版)

    立即下载
    加入资料篮
    高考数学(理数)一轮复习练习题:8.7《圆锥曲线的综合问题》(教师版)第1页
    高考数学(理数)一轮复习练习题:8.7《圆锥曲线的综合问题》(教师版)第2页
    高考数学(理数)一轮复习练习题:8.7《圆锥曲线的综合问题》(教师版)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学(理数)一轮复习练习题:8.7《圆锥曲线的综合问题》(教师版)

    展开

    这是一份高考数学(理数)一轮复习练习题:8.7《圆锥曲线的综合问题》(教师版),共6页。
    www.ks5u.com7节 圆锥曲线的综合问题【选题明细表】知识点、方法题号直线与圆锥曲线的位置关系2,3,4,8弦长和中点弦问题1,5,7定点、定值问题11,12最值、范围、存在性问题6,9,10,13基础巩固(时间:30分钟)1.设AB为过抛物线y2=2px(p>0)的焦点的弦,则|AB|的最小值为( C )(A) (B)p      (C)2p (D)无法确定解析:当弦AB垂直于对称轴时|AB|最短,这时x=,所以y=±p,|AB|min=2p.选C.2.已知过抛物线y2=4x焦点F的直线l交抛物线于A,B两点(点A在第一象限),若=3,则直线l的斜率为( A )(A) (B) (C) (D)2解析:设过抛物线y2=4x焦点F的直线l:x=ty+1交抛物线于A(x1,y1),B(x2,y2)两点,因为点A在第一象限且=3,所以y1=-3y2>0,联立得y2-4ty-4=0,解得即直线l的斜率为.故选A.3.若直线y=kx+2与双曲线x2-y2=6的右支交于不同的两点,则k的取值范围是( D )(A)(-,) (B)(0,) (C)(-,0) (D)(-,-1)解析:由得(1-k2)x2-4kx-10=0.设直线与双曲线右支交于不同的两点A(x1,y1),B(x2,y2),解得-<k<-1.即k的取值范围是(-,-1).选D.4.过点(2,1)的直线交抛物线y2=x于A,B两点(异于坐标原点O),若OAOB,则该直线的方程为( B )(A)x+y-3=0    (B)2x+y-5=0   (C)2x-y+5=0 (D)x+2y-5=0解析:观察选项知AB不垂直于x轴,设AB:y-1=k(x-2)与y2=x联立化为2ky2-5y+(5-10k)=0,所以y1·y2=,y1+y2=,x1=,x2=,OAOB,所以x1x2+y1y2=0,所以(y1y2)2+y1y2=0()2+=0,解得k=-2,k=时直线过原点,舍去,所以k=-2,只有选项B满足.B.5.已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB 的中点坐标为(1,-1),则E的方程为( D )(A)+=1   (B)+=1   (C)+=1   (D)+=1解析:设A(x1,y1),B(x2,y2),直线AB的斜率k==,两式相减得+=0,+=0+×()×=0,即a2=2b2,又c2=9,a2=b2+c2,解得a2=18,b2=9,方程是+=1,故选D. 6.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为( A )(A) (B) (C) (D)1解析:由题意可得F(,0),设P(,y0),(y0>0),=+=+=+(-)=+=(+,),可得kOM===.当且仅当=时取得等号,选A.7.已知抛物线C:x2=8y,直线l:y=x+2与C交于M,N两点,则|MN|=      . 解析:所以(y-2)2=8y,所以y2-12y+4=0,所以y1+y2=12,y1y2=4.因为直线l:y=x+2,过抛物线的焦点F(0,2),所以|MN|=(y1+2)+(y2+2)=y1+y2+4=16.答案:168.已知抛物线C:y2=4x,过其焦点F作一条斜率大于0的直线l,l与抛物线交于M,N两点,且|MF|=3|NF|,则直线l的斜率为    . 解析:抛物线C:y2=4x,焦点F(1,0),准线为x=-1,分别过M和N作准线的垂线,垂足分别为C和D,作NHCM,垂足为H,设|NF|=x,则|MF|=3x,由抛物线的定义可知:|NF|=|DN|=x,|MF|=|CM|=3x,所以|HM|=2x,由|MN|=4x,所以HMF=60°,则直线MN的倾斜角为60°,则直线l的斜率k=tan 60°=.答案:能力提升(时间:15分钟)9.已知点F1,F2是椭圆x2+2y2=2的两个焦点,点P是该椭圆上的一个动点,那么|+|的最小值是( C )(A)0 (B)1 (C)2 (D)2解析:因为O为F1F2的中点,所以+=2,可得|+|=2||,当点P到原点的距离最小时,||达到最小值,|+|同时达到最小值.因为椭圆x2+2y2=2化成标准形式,得+y2=1,所以a2=2且b2=1,可得a=,b=1,因此点P到原点的距离最小值为短轴一端到原点的距离,即||最小值为b=1,所以|+|=2||的最小值为2,故选C.10.在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为    . 解析:双曲线x2-y2=1的一条渐近线为直线y=x,显然直线y=x与直线x-y+1=0平行,且两直线之间的距离为=.因为点P为双曲线x2-y2=1的右支上一点,所以点P到直线y=x的距离恒大于0,结合图形可知点P到直线x-y+1=0的距离恒大于,即c,可得c的最大值为.答案:11.如图,已知椭圆C:+=1(a>b>0)的上顶点为A(0,1),离心率为.(1)求椭圆C的方程;(2)若过点A作圆M:(x+1)2+y2=r2(圆M在椭圆C内)的两条切线分别与椭圆C相交于B,D两点(B,D不同于点A),当r变化时,试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.解:(1)因为e===,由题设知故所求椭圆C的方程是+y2=1.(2)设切线方程为y=kx+1,则得=r,即(1-r2)k2-2k+1-r2=0,设两条切线的斜率分别为k1,k2,于是k1,k2是方程(1-r2)k2-2k+1-r2=0的两实根,故k1·k2=1.设直线BD的方程为y=mx+t,得(1+2m2)x2+4tmx+2t2-2=0,所以x1+x2=,x1x2=,又k1k2=·=1,即(mx1+t-1)(mx2+t-1)=x1x2(m2-1)x1x2+m(t-1)(x1+x2)+(t-1)2=0(m2-1)+m(t-1)+(t-1)2=0t=-3.所以直线BD过定点(0,-3).12.已知椭圆C:+=1(a>b>0)的焦距为2,且过点A(2,1).(1)求椭圆C的方程;(2)若不经过点A的直线l:y=kx+m与C交于P,Q两点,且直线AP与直线AQ的斜率之和为0,证明:直线PQ的斜率为定值.(1)解:因为椭圆C的焦距为2,且过点A(2,1),所以+=1,2c=2.因为a2=b2+c2,解得a2=8,b2=2,所以椭圆C的方程为+=1.(2)证明:设点P(x1,y1),Q(x2,y2),y1=kx1+m,y2=kx2+m,消去y得(4k2+1)x2+8kmx+4m2-8=0,(*)则x1+x2=-,x1x2=,因为kPA+kAQ=0,即=-,化简得x1y2+x2y1-(x1+x2)-2(y1+y2)+4=0.即2kx1x2+(m-1-2k)(x1+x2)-4m+4=0(**).代入得--4m+4=0,整理得(2k-1)(m+2k-1)=0,所以k=或m=1-2k.若m=1-2k,可得方程(*)的一个根为2,不合题意,所以直线PQ的斜率为定值,该值为.13.已知椭圆C:+=1(a>b>0)的离心率为,以椭圆C的任意三个顶点为顶点的三角形的面积是2.(1)求椭圆C的方程;(2)设A是椭圆C的右顶点,点B在x轴上,若椭圆C上存在点P,使得APB=90°,求点B横坐标的取值范围.解:(1)设椭圆C的半焦距为c.依题意,得=,ab=2,且a2=b2+c2.解得a=2,b=.所以椭圆C的方程为+=1.(2)椭圆C上存在点P,使得APB=90°等价于存在不是椭圆左、右顶点的点P,使得·=0成立,依题意,A(2,0),设B(t,0),P(m,n),则m2+2n2=4,且(2-m,-n)·(t-m,-n)=0,即(2-m)(t-m)+n2=0.将n2=代入上式,得(2-m)(t-m)+=0.因为-2<m<2,所以t-m+=0,即m=2t+2.所以-2<2t+2<2,解得-2<t<0,所以点B横坐标的取值范围是(-2,0).    

    相关试卷

    高考数学一轮复习作业本8.7 圆锥曲线的综合问题(含答案):

    这是一份高考数学一轮复习作业本8.7 圆锥曲线的综合问题(含答案),共8页。

    高考数学(理数)一轮复习检测卷:8.7《直线与圆锥曲线的综合问题》 (学生版):

    这是一份高考数学(理数)一轮复习检测卷:8.7《直线与圆锥曲线的综合问题》 (学生版),共4页。试卷主要包含了已知抛物线C,若双曲线E等内容,欢迎下载使用。

    高考数学(理数)一轮复习检测卷:8.7《直线与圆锥曲线的综合问题》 (教师版):

    这是一份高考数学(理数)一轮复习检测卷:8.7《直线与圆锥曲线的综合问题》 (教师版)

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map