人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.1 平行线的性质第1课时复习练习题
展开
这是一份人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.1 平行线的性质第1课时复习练习题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
平行线的性质一、选择题1.(2020自贡)如图1,直线a∥b,∠1=50°,则∠2的度数为 ( )图1A.40° B.50° C.55° D.60°2.如图2,直线AB∥CD,则下列结论正确的是 ( )图2A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.(2021长沙期末)如图3,将直尺与含30°角的三角尺叠放在一起,若∠2=70°,则∠1的大小是 ( )图3A.45° B.50° C.55° D.40°4.如图4,直线l1∥l2,AB⊥CD,∠1=22°,那么∠2的度数是 ( )图4A.68° B.58° C.22° D.28°5.(2021白银期末)小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图5,已知AB∥CD,∠BAE=91°,∠DCE=124°,则∠AEC的度数是 ( )图5A.29° B.30° C.31° D.33°6.如图6,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么下列结论错误的是 ( )图6A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等二、填空题7.如图7,直线a∥b,直线l与直线a,b分别相交于A,B两点,过点A作直线l的垂线交直线b于点C.若∠1=58°,则∠2的度数为 . 图78.(2021北京海淀区期末)如图8,∠ACB=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,则∠CDF的度数为 . 图89.将一张长方形纸片折叠成如图9所示的图形,若∠ABC=26°,则∠ACD的度数为 . 图910.(2020达州渠县期末)如图10,点B,C在直线AD上,BF平分∠EBD,CG∥BF.若∠EBA=α,则∠GCD的度数为 .(用含α的式子表示) 图1011.如图11,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则他应右转 °. 图11三、解答题12.如图12,已知AB∥CD,AC∥BD,则∠1与∠2相等吗?为什么?图12 13.如图13,AD∥EF,AB∥DG.试说明:∠1=∠2.图13
答案1.B2.D 3.B4.A5.D [解析] 如图,延长DC,交AE于点M.∵AB∥CD,∴∠CME=∠BAE=91°.∵∠DCE=124°,∴∠MCE=180°-124°=56°,∴∠AEC=180°-∠MCE-∠CME=180°-56°-91°=33°.故选D.6.D [解析] ∵AO,BO分别是∠BAC,∠ABD的平分线,∴∠BAO=∠CAO,∠ABO=∠DBO.∵AC∥BD,∴∠BAC+∠ABD=180°.因此∠BAO,∠CAO中的任意一个角与∠ABO,∠DBO中的任意一个角的和都是90°.因此选项A,B,C正确,选项D错误.7.32°8.16° [解析] ∵∠ACB=64°,CE平分∠ACB,∴∠ECB=32°.又∵CD平分∠ECB,∴∠BCD=16°.∵DF∥BC,∴∠CDF=∠BCD=16°.9.128° [解析] 如图,延长DC到点E.由题意可得∠ABC=∠BCE=∠BCA=26°,则∠ACD=180°-26°-26°=128°.故答案为128°.10.90°-α [解析] ∵∠EBA=α,∠EBA+∠EBD=180°,∴∠EBD=180°-α.∵BF平分∠EBD,∴∠FBD=∠EBD=(180°-α)=90°-α.∵CG∥BF,∴∠GCD=∠FBD=90°-α.11.80 [解析] 射线BC与射线AB所夹的锐角是80°,即在B处相对于原方向左转了80°,所以欲恢复原行走方向,需右转80°.12.解:相等.理由:∵AB∥CD,∴∠1=∠CAB.∵AC∥BD,∴∠2=∠CAB,∴∠1=∠2.13.解:∵AD∥EF(已知),∴∠1=∠BAD(两直线平行,同位角相等).∵AB∥DG(已知),∴∠BAD=∠2(两直线平行,内错角相等),∴∠1=∠2(等量代换).
相关试卷
这是一份人教版七年级下册5.3.1 平行线的性质第1课时课后复习题,共43页。
这是一份初中数学人教版七年级下册5.3.1 平行线的性质第1课时精练,共13页。试卷主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。
这是一份七年级下册5.3.1 平行线的性质第1课时课堂检测,共2页。试卷主要包含了3.1 平行线的性质,理解平行线的性质;,能运用平行线的性质进行推理证明等内容,欢迎下载使用。