沪科版九年级下册第24章 圆综合与测试同步测试题
展开这是一份沪科版九年级下册第24章 圆综合与测试同步测试题,共27页。试卷主要包含了点P关于原点对称的点的坐标是,将一把直尺等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
A.2个 B.3个 C.4个 D.5个
2、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )
A.平移 B.翻折 C.旋转 D.以上三种都不对
3、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
4、点P(-3,1)关于原点对称的点的坐标是( )
A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)
5、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )
A.3 B.4 C.5 D.6
6、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )
A.20 m B.20m
C.(20 - 20)m D.(40 - 20)m
7、下列四个图案中,是中心对称图形的是( )
A. B.
C. D.
8、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是( )
A.1cm B.2cm C.2cm D.4cm
9、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )
A.6 B. C.3 D.
10、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )
A.60 B.90 C.120 D.180
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,
问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.
2、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:
已知:⊙O(纸片),其半径为.
求作:一个正方形,使其面积等于⊙O的面积.
作法:①如图1,取⊙O的直径,作射线,过点作的垂线;
②如图2,以点为圆心,为半径画弧交直线于点;
③将纸片⊙O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;
④取的中点,以点为圆心,为半径画半圆,交射线于点;
⑤以为边作正方形.
正方形即为所求.
根据上述作图步骤,完成下列填空:
(1)由①可知,直线为⊙O的切线,其依据是________________________________.
(2)由②③可知,,,则_____________,____________(用含的代数式表示).
(3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得.
3、在平面直角坐标系中,已知点与点关于原点对称,则________,________.
4、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=110°,则的长为__.
5、一个五边形共有__________条对角线.
三、解答题(5小题,每小题10分,共计50分)
1、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.
圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.
由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)
(推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.
求证:线段AB是⊙O的直径.
请你结合图①写出推论1的证明过程.
(深入探究)如图②,点A,B,C,D均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为 .
(拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE. 若AB=,则DE的长为 .
2、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,将△ABC绕点B按顺时针方向旋转.
(1)当C转到AB边上点C′位置时,A转到A′,(如图1所示)直线CC′和AA′相交于点D,试判断线段AD和线段A′D之间的数量关系,并证明你的结论.
(2)将Rt△ABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)将Rt△ABC旅转至A、C′、A′三点在一条直线上时,请直接写出此时旋转角α的度数.
3、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D.
(1)弦AB的长为 .
(2)求劣弧的长.
4、在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,ABC的平分线交图形G于点D,连接AD,CD.求证:AD=CD.
5、问题:如图,是的直径,点在内,请仅用无刻度的直尺,作出中边上的高.
小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.
作法:如图,
①延长交于点,延长交于点;
②分别连接,并延长相交于点;
③连接并延长交于点.
所以线段即为中边上的高.
(1)根据小芸的作法,补全图形;
(2)完成下面的证明.
证明:∵是的直径,点,在上,
∴________°.(______)(填推理的依据)
∴,.
∴,________是的两条高线.
∵,所在直线交于点,
∴直线也是的高所在直线.
∴是中边上的高.
-参考答案-
一、单选题
1、A
【分析】
根据轴对称图形与中心对称图形的概念进行判断.
【详解】
解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
共2个既是轴对称图形又是中心对称图形.
故选:A.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
2、C
【详解】
解:根据图形可知,这种图形的运动是旋转而得到的,
故选:C.
【点睛】
本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.
3、B
【详解】
解:A.是轴对称图形,不是中心对称图形,故不符合题意;
B.既是轴对称图形,又是中心对称图形,故符合题意;
C.不是轴对称图形,是中心对称图形,故不符合题意;
D.是轴对称图形,不是中心对称图形,故不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4、C
【分析】
据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.
【详解】
解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).
故选:C.
【点睛】
本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.
5、A
【分析】
先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
【详解】
由旋转的性质得:,
,
是等边三角形,
,
,
.
故选:A.
【点睛】
本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
6、D
【分析】
根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
【详解】
∵人工湖面积尽量小,
∴圆以AB为直径构造,设圆心为O,
过点B作BC ⊥,垂足为C,
∵A,P分别位于B的西北方向和东北方向,
∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
∴OC=CB=CP=20,
∴OP=40,OB==,
∴最小的距离PE=PO-OE=40 - 20(m),
故选D.
【点睛】
本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.
7、A
【分析】
中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.
【详解】
解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,
故选:A.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.
8、D
【分析】
根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
【详解】
解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于
设半径为r,即OA=OB=AB=r,
OM=OA•sin∠OAB=,
∵圆O的内接正六边形的面积为(cm2),
∴△AOB的面积为(cm2),
即,
,
解得r=4,
故选:D.
【点睛】
本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
9、D
【分析】
如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
【详解】
解:如图所示,设圆的圆心为O,连接OC,OB,
∵AC,AB都是圆O的切线,
∴∠OCA=∠OBA=90°,OC=OB,
又∵OA=OA,
∴Rt△OCA≌Rt△OBA(HL),
∴∠OAC=∠OAB,
∵∠DAC=60°,
∴,
∴∠AOB=30°,
∴OA=2AB=6,
∴,
∴圆O的直径为,
故选D.
【点睛】
本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
10、C
【分析】
根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.
【详解】
解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.
故选C.
【点睛】
本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.
二、填空题
1、
【分析】
如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.
【详解】
解:如图,
∵四边形CDEF为正方形,
∴∠D=90°,CD=DE,
∴CE是直径,∠ECD=45°,
根据题意得:AB=2.5, ,
∴ ,
∴ ,
即此斛底面的正方形的边长为 尺.
故答案为:
【点睛】
本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.
2、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3)
【分析】
(1)根据切线的定义判断即可.
(2)由=AC+,计算即可;根据计算即可.
(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.
【详解】
解:(1)∵⊙O的直径,作射线,过点作的垂线,
∴经过半径外端且垂直于这条半径的直线是圆的切线;
故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;
(2)根据题意,得AC=r,==πr,
∴=AC+=r+πr,
∴=;
∵,
∴MA=-r=,
故答案为:,;
(3)如图,连接ME,
根据勾股定理,得
=
=;
故答案为:.
【点睛】
本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.
3、2 2
【分析】
关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案.
【详解】
解:∵点和点关于原点对称,
∴,
∴,
故答案为:2;2.
【点睛】
本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键.
4、##
【分析】
连接OA、OC,先求出∠ABC的度数,然后得到∠AOC,再由弧长公式即可求出答案.
【详解】
解:连接OA、OC,如图,
∵四边形ABCD是⊙O的内接四边形,∠D=110°,
∴,
∴,
∴;
故答案为:.
【点睛】
本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.
5、5
【分析】
由n边形的对角线有: 条,再把代入计算即可得.
【详解】
解:边形共有条对角线,
五边形共有条对角线.
故答案为:5
【点睛】
本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.
三、解答题
1、【推论证明】见解析;【深入探究】;【拓展应用】.
【分析】
推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;
深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;
拓展应用:连接AE,作CF⊥DE交DE于点F,首先根据等边三角形三线合一的性质求出,然后证明出A,E,C,D四点共圆,然后根据同弧或等弧所对的圆周角相等求出,,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.
【详解】
解:推论证明:∵
∴,
∴A,B,O三点共线,
又∵点O是圆心,
∴AB是⊙O的直径;
深入探究:如图所示,连接AB,
∵∠ACB=90°
∴AB是⊙O的直径
∴
∵∠ACD=60°
∴
∵
∴
∴在中,
∴;
拓展应用:如图所示,连接AE,作CF⊥DE交DE于点F,
∵△ABC是等边三角形,点E是BC的中点
∴,
又∵以AC为底边在三角形ABC外作等腰直角三角形ACD
∴,
∴点A,E,C,D四点都在以AC为直径的圆上,
∵
∴
∵CF⊥DE
∴是等腰直角三角形
∴,
∴
∵
∴,解得:
∴
∵
∴
∴在中,
∴
∴.
【点睛】
此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.
2、
(1),证明见解析
(2)成立,证明见解析
(3)
【分析】
(1)设,先根据直角三角形的性质可得,再根据旋转的性质可得,然后根据等边三角形的判定与性质可得,,都是等边三角形,从而可得,由此即可得出结论;
(2)在上截取,连接,先根据旋转的性质可得,从而可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,,然后根据三角形的外角性质可得,最后根据等腰三角形的判定可得,由此即可得出结论;
(3)如图(见解析),先根据旋转的性质可得,再根据直角三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据旋转角即可得.
(1)
解:,证明如下:
设,
在中,,
,
由旋转的性质得:,
,和都是等边三角形,
,
,
是等边三角形,
,
;
(2)
解:成立,证明如下:
如图,在上截取,连接,
由旋转的性质得:,
,
,
在和中,,
,
,
,
,
;
(3)
解:如图,当点三点在一条直线上时,
由旋转的性质得:,
,
在和中,,
,
,
则旋转角.
【点睛】
本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.
3、(1),(2).
【分析】
(1)根据弦AB垂直平分半径OC,OC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×;
(2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.
【详解】
解:(1)∵弦AB垂直平分半径OC,OC=OB=10cm,
∴OD=CD=,∠ODB=90°,
∴,
∴AB=2BD=2×,
故答案为;
(2)cos∠DOB=,
∴∠DOB=60°,
∴的度数为2×60°=120°,
∴.
【点睛】
本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.
4、见解析
【分析】
由题意画图,再根据圆周角定理的推论即可得证结论.
【详解】
证明:根据题意作图如下:
∵BD是圆周角ABC的角平分线,
∴∠ABD=∠CBD,
∴,
∴AD=CD.
【点睛】
本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.
5、(1)见详解;(2)90,直径所对的圆周角是直角,BD.
【分析】
(1)根据作图步骤作出图形即可;
(2)根据题意填空,即可求解.
【详解】
解:(1)如图,CH为△ABC中AB边上的高;
(2)证明:∵是的直径,点,在上,
∴___90_°.(__直径所对的圆周角是直角_)(填推理的依据)
∴,.
∴,_BD__是的两条高线.
∵,所在直线交于点,
∴直线也是的高所在直线.
∴是中边上的高.
故答案为:90,直径所对的圆周角是直角,BD.
【点睛】
本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试课后作业题,共36页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份数学沪科版第24章 圆综合与测试同步测试题,共31页。
这是一份沪科版九年级下册第26章 概率初步综合与测试练习,共19页。试卷主要包含了下列事件是必然发生的事件是,有两个事件,事件,下列说法正确的是等内容,欢迎下载使用。