沪科版九年级下册第26章 概率初步综合与测试练习
展开这是一份沪科版九年级下册第26章 概率初步综合与测试练习,共19页。试卷主要包含了下列事件是必然发生的事件是,有两个事件,事件,下列说法正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是( )
A.15 B.12 C.9 D.4
2、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:
摸球的次数 | 200 | 300 | 400 | 1000 | 1600 | 2000 |
摸到黑球的频数 | 142 | 186 | 260 | 668 | 1064 | 1333 |
摸到黑球的频率 | 0.7100 | 0.6200 | 0.6500 | 0.6680 | 0.6650 | 0.6665 |
该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有( )个.
A.4 B.3 C.2 D.1
3、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是( )
A.1 B. C. D.
4、下列事件是必然发生的事件是( )
A.在地球上,上抛的篮球一定会下落
B.明天的气温一定比今天高
C.中秋节晚上一定能看到月亮
D.某彩票中奖率是1%,买100张彩票一定中奖一张
5、下列词语所描述的事件,属于必然事件的是( )
A.守株待兔 B.水中捞月 C.水滴石穿 D.缘木求鱼
6、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )
A. B. C. D.
7、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是( )
A.(1)(2)都是随机事件 B.(1)(2)都是必然事件
C.(1)是必然事件,(2)是随机事件 D.(1)是随机事件,(2)是必然事件
8、下列说法正确的是( )
A.“经过有交通信号的路口遇到红灯”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.“心想事成,万事如意”描述的事件是随机事件
D.天气预报显示明天为阴天,那么明天一定不会下雨
9、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是( )
A. B. C. D.
10、下列事件是必然事件的是( )
A.同圆中,圆周角等于圆心角的一半
B.投掷一枚均匀的硬币100次,正面朝上的次数为50次
C.参加社会实践活动的367个同学中至少有两个同学的生日是同一天
D.把一粒种子种在花盆中,一定会发芽
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为 _____个.
2、在一个不透明的布袋中装有红球、白球共20个,这些球除颜色外都相同.小明从中随机摸出一个球记下颜色并放回,通过大量重复试验,发现摸到红球的频率稳定在0.65,则布袋中红球的个数大约是________.
3、如图,一个可以自由转动且质地均匀的转盘,被分成6个大小相同的扇形,指针是固定的,当转盘停止时,指针指向任意一个扇形的可能性相同(指针指向两个扇形的交线时,当作指向右边的扇形).把部分扇形涂上了灰色,则指针指向灰色区域的概率为______.
4、某农科所为了了解新玉米种子的出芽情况,在推广前做了五次出芽实验,在相同的培育环境中分别实验,实验具体情况记录如下:
种子数量 | 100 | 300 | 500 | 1000 | 3000 |
出芽数量 | 99 | 282 | 480 | 980 | 2910 |
随着实验种子数量的增加,可以估计A种子出芽的概率是 _____.
5、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在—个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出根缎带,则恰好摸出1根红色缎带1根黄色缎带的概率是______.
三、解答题(5小题,每小题10分,共计50分)
1、太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园四个景点的旅游宣传卡片,这些卡片的大小、形状及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率.
(1)把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;
(2)把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率.
2、从1名男生和3名女生中随机抽取参加2022年北京冬季奥运会的志愿者.
(1)抽取2名,求恰好都是女生的概率;
(2)抽取3名,恰好都是女生的概率是 .
3、某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲.乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).
甲种品牌化妆品 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 6 | 12 | 6 | |
乙种品牌化妆品 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 12 | 6 | 12 |
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;
(2)如果一个顾客当天在本店购买满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.
4、国庆期间,某电影院上映了《长津湖》《我和我父辈》《五个扑水的少年》三部电影.甲、乙两同学从中选取一部电影观看.求甲、乙两同学选取同一部电影的概率.
5、小明每天骑自行车.上学,都要通过安装有红、绿灯的4个十字路口.假设每个路口红灯和绿灯亮的时间相同.
(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)
(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为 .(请直接写出答案)
-参考答案-
一、单选题
1、A
【分析】
由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n.
【详解】
∵摸到红球的频率稳定在20%,
∴摸到红球的概率为20%,
而a个小球中红球只有3个,
∴摸到红球的频率为.解得.
故选A.
【点睛】
此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.
2、C
【分析】
该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.
【详解】
解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,
估计摸出黑球的概率为0.667,
则摸出绿球的概率为,
袋子中球的总个数为,
由此估出黑球个数为,
故选:C.
【点睛】
本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
3、B
【分析】
根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.
【详解】
解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,
a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,
关于x的方程为一元二次方程的概率是,
故选择B.
【点睛】
本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.
4、A
【分析】
根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.
【详解】
解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;
B、明天的气温一定比今天的高,是随机事件,不符合题意;
C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;
D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意.
故选:A.
【点睛】
本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解必然事件指在一定条件下一定发生的事件.
5、C
【分析】
根据必然事件就是一定发生的事件逐项判断即可.
【详解】
A.守株待兔是随机事件,故该选项不符合题意;
B.水中捞月是不可能事件,故该选项不符合题意;
C.水滴石穿是必然事件,故该选项符合题意;
D.缘木求鱼是不可能事件,故该选项不符合题意.
故选:C.
【点睛】
本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.
6、B
【分析】
列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.
【详解】
解:列表如下:
| 1 | 2 |
1 | 2 | 3 |
2 | 3 | 4 |
由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,
所以两次摸出的小球的标号之和是3的概率为,
故选:B.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
7、D
【分析】
必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.
【详解】
解:事件(1):购买1张福利彩票,中奖,是随机事件,
事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,
故选D
【点睛】
本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.
8、C
【详解】
解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;
B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;
C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;
D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;
故选:C
【点睛】
本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.
9、A
【分析】
根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可
【详解】
解:∵总可能结果有4种,摸到标号大于2的结果有2种,
∴从袋子中任意摸出1个球,摸到标号大于2的概率是
故选A
【点睛】
本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.
10、C
【分析】
直接利用随机事件以及不可能事件、必然事件的定义分析即可得答案.
【详解】
A、同圆中,圆周角等于圆心角的一半,是随机事件,不符合题意;
B、投掷一枚均匀的硬币100次,正面朝上的次数为50次,是随机事件,不符合题意;
C、参加社会实践活动的367个同学中至少有两个同学的生日是同一天,是必然事件,符合题意;
D、把一粒种子种在花盆中,一定会发芽,是随机事件,不符合题意.
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题
1、
【分析】
先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.
【详解】
解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,
设口袋中大约有x个白球,则=,
解得x=20,
经检验x=20是原方程的解,
估计口袋中白球的个数约为20个.
故答案为:20.
【点睛】
本题考查了用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.
2、13
【分析】
总数量乘以摸到红球的频率的稳定值即可.
【详解】
解:根据题意知,布袋中红球的个数大约是20×0.65=13,
故答案为:13.
【点睛】
本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
3、
【分析】
指针指向灰色区域的概率就是灰色区域的面积与总面积的比值,计算面积比即可.
【详解】
解:观察转盘灰色区域的面积与总面积的比值为
故答案为:.
【点睛】
本题考查几何概率.解题的关键在于求出所求事件的面积与总面积的比值.
4、
【分析】
根据概率的公式解题:A种子出芽的概率=A种子出芽数量÷玉米种子总数量.
【详解】
解:
故答案为:.
【点睛】
本题考查概率的意义,大量反复试验下频率稳定值即为概率,随机事件发生的概率在0至1之间.
5、
【分析】
画树状图共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,再由概率公式即可求解
【详解】
解:根据题意画出树状图,得:
共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,
所以摸出1根红色缎带1根黄色缎带的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率是解题的关键.
三、解答题
1、(1);(2).
【分析】
(1)根据题意列表可得共有16种等可能的结果,其中两人抽到同一景点的结果有4种,进而由概率公式求解即可;
(2)根据题意列表可得共有12种等可能的结果,其中两人抽到动物园和森林公园的结果有2种,进而由概率公式求解即可.
【详解】
解:(1)列表如下:
| D | J | S | F |
D | (D,D) | (J,D) | (S,D) | (F,D) |
J | (D,J) | (J,J) | (S,J) | (F,J) |
S | (D,S) | (J,S) | (S,S) | (F,S) |
F | (D,F) | (J,F) | (S,F) | (F,F) |
所有等可能的情况数为16种,两人抽到同一景点的结果有4种,
所以两人抽到同一景点的概率为.
(2)列表如下:
| D | J | S | F |
D |
| (J,D) | (S,D) | (F,D) |
J | (D,J) |
| (S,J) | (F,J) |
S | (D,S) | (J,S) |
| (F,S) |
F | (D,F) | (J,F) | (S,F) |
|
所有等可能的情况数为12种,其中两人抽到动物园和森林公园的结果有2种,
所以两人抽到动物园和森林公园的概率为.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
2、(1);(2)
【分析】
(1)利用列表法进行求解即可;
(2)利用树状图的方法列出所有可能的情况,再求解即可.
【详解】
解:(1)列表如下:
| 男 | 女1 | 女2 | 女3 |
男 |
| (女1,男) | (女2,男) | (女3,男) |
女1 | (男,女1) |
| (女2,女1) | (女3,女1) |
女2 | (男,女2) | (女1,女2) |
| (女3,女2) |
女3 | (男,女3) | (女1,女3) | (女2,女3) |
|
由表格知,共有12种等可能性结果,其中满足“都是女生”(记为事件A)的结果只有6种,
∴抽取2名,恰好都是女生的概率;
(2)列树状图如下:
由树状图可知,共有24种等可能性结果,其中满足“恰好都是女生”(记为事件B)的结果只有6种,
∴抽取3名,恰好都是女生的概率,
故答案为:.
【点睛】
本题考查列树状图或表格法求概率,掌握列树状图或表格的方法,做到不重不漏的列出所有情况是解题关键.
3、
(1)摇出一红一白的概率=
(2)选择甲品牌化妆品,理由见解析
【分析】
(1)让所求的情况数除以总情况数即为所求的概率;
(2)算出相应的平均收益,比较即可.
(1)
解:树状图为:
∴一共有6种情况,摇出一红一白的情况共有4种,
摇出一红一白的概率=;
(2)
(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,
∴甲品牌化妆品获礼金券的平均收益是:×6+×12+×6=10元.
乙品牌化妆品获礼金券的平均收益是:×12+×6+×12=8元.
∴选择甲品牌化妆品.
【点睛】
本题主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
4、
【分析】
通过画树状图可知:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,再由概率公式求解即可.
【详解】
解:把《长津湖》《我和我父辈》《五个扑水的少年》三部电影分别记为A、B、C,
画树状图如下:
共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,
∴甲、乙两同学选取同一部电影的概率为.
【点睛】
本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率 =所求情况数与总情况数之比.
5、
(1),见解析
(2)
【解析】
(1)
列表如下
第一个十字路口\第二个 | 红灯 | 绿灯 |
红灯 | 红红 | 红绿 |
绿灯 | 绿红 | 绿绿 |
∵共有4种等可能情形,满足条件的有1种.
∴通过前2个十字路口时都是绿灯的概率.
(2)
画树状图如图,表示红灯,表示绿灯,
∵共有16种等可能情形,满足条件的有11种.
小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为
故答案为:
【点睛】
本题考查了列表法或画树状图法求概率,掌握列表法或画树状图法是解题的关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试同步测试题,共27页。试卷主要包含了点P关于原点对称的点的坐标是,将一把直尺等内容,欢迎下载使用。
这是一份初中数学第26章 概率初步综合与测试同步练习题,共19页。试卷主要包含了下列说法中正确的是,下列事件中是不可能事件的是,下列事件是必然事件的是,下列说法正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共20页。试卷主要包含了下列说法正确的是,下列事件为随机事件的是等内容,欢迎下载使用。