初中数学第七章 相交线与平行线综合与测试当堂达标检测题
展开
这是一份初中数学第七章 相交线与平行线综合与测试当堂达标检测题,共21页。试卷主要包含了下列命题是真命题的是,如图,下列条件中不能判定的是等内容,欢迎下载使用。
冀教版七年级数学下册第七章相交线与平行线章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EFHC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①ADBC;②GK平分∠AGC;③∠DGH=37°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有( )A.4个 B.3个 C.2个 D.1个2、下列各图中,和是对顶角的是( )A. B.C. D.3、如图,直线AB和CD相交于点O,下列选项中与∠AOC互为邻补角的是( )A.∠BOC B.∠BOD C.∠DOE D.∠AOE4、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )A.2cm B.小于2cm C.不大于2cm D.4cm5、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )A.30° B.60° C.30°或60° D.60°或120°6、下列命题是真命题的是( )A.内错角相等B.过一点有且只有一条直线与已知直线垂直C.相等的角是对顶角D.过直线外一点,有且只有一条直线与已知直线平行7、如图,△ABC沿BC方向平移到△DEF的位置,若BE=3cm,则平移的距离为( )A.1cm B.2cm C.3cm D.4cm8、如图,下列条件中不能判定的是( )A. B. C. D.9、如图,点在延长线上,下列条件中不能判定的是( )A. B. C. D.10、如图,已知OE是的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,在公园绿化时,需要把管道l中的水引到A,B两处.工人师傅设计了一种又快又节省材料的方案如下:画法:如图,(1)连接AB;(2)过点A画线段直线l于点C,所以线段AB和线段AC即为所求.请回答:工人师傅的画图依据是______.2、如图,OA⊥OB,若∠1=55°16′,则∠2的度数是 _____.3、平移的概念:一个图形沿着某个方向移动一定的距离,图形的这种移动,叫做______.4、如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=40°,则∠CON的度数为___.5、如图,从A点向已知直线 l 画一条垂直的线段和几条不垂直的线段.连接直线外一点与直线上各点的所有线段中,______最短.简单说成:垂线段最短. 直线外一点到这条直线的垂线段的长度,叫做______.线段______的长度叫做点A到直线l的距离.三、解答题(5小题,每小题10分,共计50分)1、在三角形ABC中,于D,F是BC上一点,于H,E在AC上,.(1)如图1,求证:;(2)如图2,若,请直接写出图中与互余的角,不需要证明.2、如图,DH交BF于点E,CH交BF于点G,,,.试判断CH和DF的位置关系并说明理由.3、已知:如图,,.求证:.4、如图,已知P,A,B三点,按下列要求完成画图和解答.(1)作直线AB;(2)连接PA,PB,用量角器测量∠APB= .(3)用刻度尺取AB中点C,连接PC;(4)过点P画PD⊥AB于点D;(5)根据图形回答:在线段PA,PB,PC,PD中,最短的是线段 的长度.理由: .5、如图,方格纸中每个小正方形的边长都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).(1)在图①中,过点P画出AB的平行线,过P点画出表示点P到直线AB距离的垂线段;(2)在图②中,以线段AB、CD、EF的长为边长的三角形的面积等于 . -参考答案-一、单选题1、B【解析】【分析】根据平行线的判定定理得到AD∥BC,故①正确;由平行线的性质得到∠AGK=∠CKG,等量代换得到∠AGK=∠CGK,求得GK平分∠AGC;故②正确;根据题意列方程得到∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,得到∠AGK=α+β,根据角平分线的定义即可得到结论.【详解】解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;∵∠FGA的余角比∠DGH大16°,∴90°-∠FGA-∠DGH=16°,∵∠FGA=∠DGH,∴90°-2∠FGA=16°,∴∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,∴∠AGK=α+β,∵GK平分∠AGC,∴∠CGK=∠AGK=α+β,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+α=β+α+β,∴β=18.5°,∴∠MGK=18.5°,故④错误,故选:B.【点睛】本题考查了平行线的判定和性质,角平分线的定义,对顶角性质,一元一次方程,正确的识别图形是解题的关键.2、D【解析】【分析】由题意根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:根据对顶角的定义:中和顶点不在同一位置,不是对顶角;中和角度不同,不是对顶角;中和顶点不在同一位置,不是对顶角;中和是对顶角;故选:.【点睛】此题主要考查了对顶角,正确把握对顶角的定义是解题关键.3、A【解析】【详解】解:图中与互为邻补角的是和,故选:A.【点睛】本题考查了邻补角,熟练掌握邻补角的定义(两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角)是解题关键.4、C【解析】【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,∴点到直线的距离不大于,故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.5、D【解析】【分析】根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.【详解】解:如图1,∵a∥b,∴∠1=∠α,∵c∥d,∴∠β=∠1=∠α=60°;如图(2),∵a∥b,∴∠α+∠2=180°,∵c∥d,∴∠2=∠β,∴∠β+∠α=180°,∵∠α=60°,∴∠β=120°.综上,∠β=60°或120°.故选:D.【点睛】本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.6、D【解析】【分析】根据平行线的性质、垂直的判定、对顶角和平行线的判定进行判断即可.【详解】解:A、两直线平行,内错角相等,原命题是假命题;B、在同一平面上,过一点有且只有一条直线与已知直线垂直,原命题是假命题;C、相等的角不一定是对顶角,原命题是假命题;D、过直线外一点,有且只有一条直线与已知直线平行,是真命题;故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、垂直的判定、对顶角和平行线的判定.7、C【解析】【分析】根据题意可得 的长度等于平移的距离,即可求解.【详解】∵△ABC沿BC方向平移到△DEF的位置,∴点 的对应点为 ,即 的长度等于平移的距离,∵BE=3cm,∴平移的距离为3cm.故选:C【点睛】本题主要考查了图形的平移,熟练掌握平移的距离都等于对应点间长度是解题的关键.8、A【解析】【分析】根据平行线的判定逐个判断即可.【详解】解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,∴∠3=∠5,因为”同旁内角互补,两直线平行“,所以本选项不能判断AB∥CD;B、∵∠3=∠4,∴AB∥CD,故本选项能判定AB∥CD;C、∵,∴AB∥CD,故本选项能判定AB∥CD;D、∵∠1=∠5,∴AB∥CD,故本选项能判定AB∥CD;故选:A.【点睛】本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.9、A【解析】【分析】根据平行线的判定方法直接判定即可.【详解】解:选项B中,,(内错角相等,两直线平行),所以正确;选项C中,,(内错角相等,两直线平行),所以正确;选项D中,,(同旁内角互补,两直线平行),所以正确;而选项A中,与是直线、被所截形成的内错角,因为,所以应是,故A错误.故选:A.【点睛】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.10、B【解析】【分析】根据角平分线定义得到,由于反例要满足角相等且不是对顶角,所以可作为反例.【详解】解:OE是的平分线,可作为说明命题“相等的角是对顶角”为假命题的反例故选:B.【点睛】本题考查命题与定理:判断一件事情的语句叫做命题,命题由题设和结论组成,题设是已知事项,结论是由已知事项推出的事实,一个命题可以写出“如果…那么…”的形式,任何一个命题非真即假,判断一个命题是假命题,只要举出反例即可.二、填空题1、两点之间,线段最短;垂线段最短【解析】【分析】根据两点之间线段最短以及垂线段最短即可判断.【详解】解:由于两点之间距离最短,故连接AB,由于垂线段最短可知,过点A作AC⊥直线l于点C,此时AC最短,故答案为:两点之间,线段最短;垂线段最短.【点睛】本题考查作图−应用与设计作图,解题的关键是正确两点之间线段最短以及垂线段最短,本题属于基础题型.2、故答案为: 【点睛】本题考查了角的计算,对顶角相等,熟练掌握对顶角相等这条性质是解题的关键.75.【解析】【分析】直接利用垂线的定义得出∠1+∠2=90°,再求∠1的余角∠2,结合度分秒转化得出答案.【详解】解:∵OA⊥OB,∴∠AOB=90°,∴∠1+∠2=90°,∵∠1=55°16′,∴∠2=90°﹣55°16′=34°44′.故答案为:34°44′.【点睛】本题考查垂直定义,求一个角的余角,度分秒互化,掌握垂直定义,求一个角的余角,度分秒互化是解题关键.3、平移【解析】略4、50°##50度【解析】【分析】直接利用角平分线的性质得出∠AOM=∠MOC,进而利用垂直的定义得出∠CON的度数.【详解】解:∵射线OM平分∠AOC,∠AOM=40°,∴∠AOM=∠MOC=40°,∵ON⊥OM,∴∠CON的度数为:90°-40°=50°.故答案为:50°.【点睛】此题主要考查了垂线定义以及角平分线的性质,得出∠MOC的度数是解题关键.5、 垂线段 点到直线的距离 AD【解析】略三、解答题1、 (1)证明见解析;(2).【解析】【分析】(1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断;(2)由可推出,,即得出,.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.(1)证明:∵,,∴,∴.∵,∴,∴.(2)与互余的角有:.证明:∵,∴,,∴,. ∵,∴,∴.∵,∴,即.综上,可知与互余的角有:.【点睛】本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键.2、,理由见解析.【解析】【分析】先根据可得,根据平行线的性质可得,从而可得,再根据平行线的判定可得,然后根据平行线的性质可得,从而可得,最后根据平行线的判定即可得出结论.【详解】解:,理由如下:∵,∴,∴,∵,∴,∴,∴,∵,∴,∴.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.3、见解析【解析】【分析】由题意得到∠1=∠A,再根据同位角相等,两直线平行即可得解.【详解】证明:,,,.【点睛】本题考查平行线的判定,熟记同位角相等,两直线平行是解题的关键.4、 (1)见解析(2)90°(3)见解析(4)见解析(5)PD,垂线段最短【解析】【分析】(1)根据直线的特点画图即可;(2)用量角器量取即可;(3)根据中点的定义解答;(4)用三角板的两条直角边画图即可;(5)根据垂线段最短解答.(1)如图,直线AB即为所求作.(2)测量可知,∠APB=90°.故答案为:90°.(3)如图,线段PC即为所求作.(4)如图,线段PD即为所求作.(5)根据垂线段最短可知,线段PD最短,故答案为:PD,垂线段最短.【点睛】本题考查了直线,射线,线段等知识,以及线段的中点,垂线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.5、 (1)见解析(2)4【解析】【分析】(1)直接利用网格结合勾股定理得出答案;(2)利用平移的性质得出以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积,进而得出答案.(1)解:如图①所示:MN∥AB,PD⊥AB;,(2)解:如图②所示:以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积为:3×4-×1×2-×2×3-×2×4=4.故答案为:4.【点睛】本题主要考查了应用设计与作图,正确平移线段是解题关键.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共24页。试卷主要包含了如图,不能推出a∥b的条件是,下列命题中,为真命题的是,以下命题是假命题的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后练习题,共21页。试卷主要包含了下列说法中正确的有,直线等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步达标检测题,共21页。试卷主要包含了如图所示,直线l1∥l2,点A,下列命题中是假命题的是等内容,欢迎下载使用。