数学七年级下册第七章 相交线与平行线综合与测试课后测评
展开
这是一份数学七年级下册第七章 相交线与平行线综合与测试课后测评,共23页。试卷主要包含了如图,直线AB∥CD,直线AB,下列语句正确的个数是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )A.30° B.60° C.30°或60° D.60°或120°2、如图,下列条件中能判断直线的是( )A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠53、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等4、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )A.30° B.40° C.50° D.60°5、如图,某位同学将一副三角板随意摆放在桌上,则图中的度数是( )A.70° B.80° C.90° D.100°6、下列语句正确的个数是( )(1)经过平面内一点有且只有一条直线与已知直线垂直;(2)经过平面内一点有且只有一条直线与已知直线平行;(3)在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(4)在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.A.1个 B.2个 C.3个 D.4个7、如图,如果将图中任意一条线段沿方格线的水平或竖直方向平移1格称为“1步”,那么通过平移要使图中的3条线段首尾相接组成一个三角形,最少需要( )A.4步 B.5步 C.6步 D.7步8、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )A.2cm B.小于2cm C.不大于2cm D.4cm9、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )A.125° B.115° C.105° D.95°10、已知直线mn,如图,下列哪条线段的长可以表示直线与之间的距离( )A.只有 B.只有 C.和均可 D.和均可第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB∥CD,M在AB上,N在CD上,求∠1+∠2+∠3+∠4=_______.2、如图,是由通过平移得到,且点在同一条直线上,如果,.那么这次平移的距离是_________.3、如图所示的网格是正方形网格,A,B,C,D是网格线的交点.我们晓观数学发现△ABD的面积与△ABC的面积相等,则这样的点D(不包含C)共有___个.4、如图所示,点A,B,C,D在同一条直线上.在线段PA,PB,PC,PD中,最短的线段是________,理由是________.5、如图,直线AB、CD相交于点O,射线OM平分∠AOC,若∠BOD=72°,则∠BOM=_________°.三、解答题(5小题,每小题10分,共计50分)1、完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知)∴∠ =90°( )∵∠1=30°,∠B=60°(已知)∴∠1+∠BAC+∠B= ( )即∠ +∠B=180°∴AD∥BC( )2、如图,方格纸中每个小正方形的边长为1cm,点A、B、C均为格点.(1)根据要求画图:①过C点画直线MN∥AB;②过点C画AB的垂线,垂足为D点.(2)图中线段 的长度表示点A到直线CD的距离;(3)三角形ABC的面积= cm2.3、如图,已知点A,B,C,D是不在同一直线上的四个点,请按要求画出图形.(1)画直线AB和射线CB;(2)连接AC,过点C画直线AB的垂线,垂足为E;(3)在直线AB上找一点P,连接PC、PD,使的和最短.4、如图,已知在同一平面内的三点(1)作直线,射线,线段;(2)在直线上找一点,使线段的长最小,画出图形,并说明理由.5、如图,已知平面上有三个点A,B,C,请按要求画图,并回答问题:(1)画直线AB,射线CA;(2)延长AC到D,使得,连接BD;(3)过点B画,垂足为E;(4)通过测量可得,点B到直线AC的距离约为 cm.(精确到0.1cm) -参考答案-一、单选题1、D【解析】【分析】根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.【详解】解:如图1,∵a∥b,∴∠1=∠α,∵c∥d,∴∠β=∠1=∠α=60°;如图(2),∵a∥b,∴∠α+∠2=180°,∵c∥d,∴∠2=∠β,∴∠β+∠α=180°,∵∠α=60°,∴∠β=120°.综上,∠β=60°或120°.故选:D.【点睛】本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.2、C【解析】【分析】利用平行线的判定方法判断即可得到结果.【详解】解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.故选:C.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.3、D【解析】【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.4、C【解析】【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.5、C【解析】【分析】如图(见解析),过点作,先根据平行线的性质可得,再根据角的和差即可得.【详解】解:如图,过点作,,,,,故选:C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.6、C【解析】【分析】由题意直接根据平行公理及平行线的判定定理进行判断即可.【详解】解:经过平面内一点有且只有一条直线与已知直线垂直,故(1)正确;经过直线外一点有且只有一条直线与已知直线平行,故(2)不正确;平面内,平行具有传递性,故(3)正确;同一平面内,如果两条直线都与第三条直线垂直,则同位角(内错角)相等,这两条直线互相平行,故(4)正确,∴正确的有(1)、(3)、(4),故选:C.【点睛】本题考查平行公理及平行线的判定定理,熟练掌握理解平行线公理及判定定理是解题的关键.7、B【解析】【分析】根据图示和平移的性质,注意正确的计数,查清方格的个数,从而求出步数.【详解】解:由图形知,中间的线段向左平移1个单位,上边的直线向右平移2个单位,最下边的直线向上平移2个单位,只有这样才能使构造的三角形平移的次数最少,其它平移方法都多于5步.∴通过平移使图中的3条线段首尾相接组成一个三角形,最少需要5步.故选:B.【点睛】本题考查了图形的平移变换,注意平移不改变图形的形状和大小且平移前后图形对应点之间的连线应该互相平行,另外使平移后成为三角形.8、C【解析】【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,∴点到直线的距离不大于,故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.9、A【解析】【分析】利用互余角的概念与邻补角的概念解答即可.【详解】解:∵∠1=35°,∠AOC=90°,∴∠BOC=∠AOC−∠1=55°.∵点B,O,D在同一条直线上,∴∠2=180°−∠BOC=125°.故选:A.【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.10、C【解析】【分析】由平行线之间的距离的定义判定即可得解.【详解】解:从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两条平行线之间的距离,线段和都可以示直线与之间的距离,故选:C.【点睛】本题考查了平行线之间的距离,解题的关键是熟记平行线之间的距离的概念.二、填空题1、540°【解析】【分析】首先过点E、F作EG、FH平行于AB,根据两直线平行,同旁内角互补,即可求得答案.【详解】如图,过点E、F作EG、FH平行于AB,∵AB∥CD,∵AB∥EG∥FH∥CD,∴∠1+∠MEG=180°,∠GEF+∠EFH=180°,∠HFN+∠4=180°,∴∠1+∠MEF+∠EFN+∠4=540°,故答案为:540°.【点睛】此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.2、4【解析】【分析】根据平移的性质得BE=CF,再利用BE+EC+CF=BF得到BE+6+BE=14,然后解方程即可.【详解】解:∵三角形DEF是由三角形ABC通过平移得到,∴BE=CF,∵BE+EC+CF=BF,∴BE+6+BE=14,∴BE=4.故答案为4.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.3、5【解析】【分析】一条直线有两条与之距离相等的直线,如图,在AB的左侧和右侧均作一条与AB距离大小为C到AB的距离的直线,直线与网格的交点即为所求.【详解】解:如图,连接CD∵△ABD的面积与△ABC的面积相等∴,可知在CD上与网格交的点均为D点又∵一条直线有两条与之距离相等的直线∴在AB的左侧作一条与AB平行的直线EF如图所示,EF与网格的交点也为D点∴满足条件的D点有5个故答案为5.【点睛】本题考查了平行的性质.解题的关键在于明确一条直线有两条与之距离相等的直线.4、 PC 垂线段最短【解析】【分析】根据垂线段最短求解即可.【详解】解:∵,PA,PB,PD都不垂直于AD,∴由垂线段最短可得,最短的线段是PC,理由是:垂线段最短.故答案为:PC;垂线段最短.【点睛】此题考查了垂线段最短的性质,解题的关键是熟练掌握垂线段最短.5、144【解析】【分析】首先根据邻补角互补,对顶角相等可得∠AOC=72°,∠BOC=108°,再根据角平分线的性质可得∠MOC的度数,进而可得答案.【详解】解:∵∠BOD=72°,∴∠AOC=72°,∠BOC=108°,∵OM平分∠AOC,∴∠MOC=36°,∴∠BOM=∠BOC+∠MOC=144°.故答案为:144.【点睛】本题主要考查了对顶角和邻补角,角平分线的定义,关键是掌握邻补角互补,对顶角相等.三、解答题1、见解析【解析】【分析】先根据垂直的定义可得,再根据角的和差可得,从而可得,然后根据平行线的判定即可得证.【详解】证明:∵(已知),∴(垂直的定义),∵,(已知),∴(等量关系),即,∴(同旁内角互补,两直线平行).【点睛】本题考查了垂直、平行线的判定等知识点,熟练掌握平行线的判定是解题关键.2、 (1)画图见详解.(2)AD##DA(3)2.5####【解析】【分析】(1)①根据方格纸的特点,过C点与AB平行的直线MN,应是过点C的相连的三个横方格左下角到右上角连成的对角线所在的直线.②过C点与AB垂直的直线CD,应是过点C的相连的三个竖方格左上角到右下角连成的对角线所在的直线.(2)因为CD与AB垂直,所以点A到CD的距离就是线段AD的长度.(3)三角形ABC的面积等于三角形所在的方格所形成的长方形的面积减掉三个小三角形的面积.(1)如图所示①直线MN即为所求作的图形;②CD即为所求的AB的垂线;(2)∵CD⊥AB∴点A到直线CD的距离就是线段AD的长度.(3)三角形ABC的面积=3×2-(1×2÷2+1×2÷2+1×3÷2)=6-3.5=2.5(cm2)【点睛】本题考查了作图-应用与设计作图、点到直线的距离、平行线的判定和性质、三角形的面积,解决本题的关键是准确画图.3、 (1)见解析(2)见解析(3)见解析【解析】【分析】(1)根据直线和射线的定义,即可求解;(2)根据垂线的定义,即可求解;(3)根据题意可得:PC+PD≥CD,从而得到当P、C、D三点共线时,PC+PD的和最短,即可求解.(1)解:直线AB和射线CB即为所求,如图所示;(2)如图,直线CE即为所求;(3)连接CD交AB于点P,如图所示,点P即为所求根据题意得:PC+PD≥CD,∴当P、C、D三点共线时,PC+PD的和最短.【点睛】本题主要考查了直线、射线、线段、垂线的定义,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线上两个点和它们之间的部分叫做线段;当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足是解题的关键.4、 (1)见解析(2)图见解析,理由:连结直线外一点与直线上各点的所有线段中,垂线段最短.【解析】【分析】(1)根据题意,结合直线、射线、线段的定义画图;(2)根据垂线段最短解题.(1)如图,直线,射线,线段就是所求作的图形;(2)如图,点M即为所求作的点.理由:连结直线外一点与直线上各点的所有线段中,垂线段最短.【点睛】本题考查基础作图—直线、射线、线段、垂线段等知识,是重要考点,掌握相关知识是解题关键.5、(1)见解析;(2)见解析;(3)见解析;(4)3.1【解析】【分析】(1)根据直线、射线的定义,即可求解;(2)根据题意,先延长AC到D,使得,再连接BD,即可求解; (3)根据题意,过点B画,垂足为E,即可求解; (4)根据题意得:点B到直线AC的距离为 的长,测量 的长,即可求解.【详解】解:(1)如图所示:(2)如图所示:(3)如图所示:(4)根据题意得:点B到直线AC的距离为 的长,所以通过测量可得,点B到直线AC的距离约为3.1厘米.【点睛】本题主要考查了直线、射线、线段的定义,点到直线的距离,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线外一点到直线的垂线段的长度叫做点到直线的距离是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题,共23页。试卷主要包含了如图,直线AB∥CD,直线AB,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试当堂达标检测题,共22页。试卷主要包含了下列语句正确的个数是,下列命题是真命题的是等内容,欢迎下载使用。
这是一份2020-2021学年第七章 相交线与平行线综合与测试当堂检测题,共21页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。