七年级下册第七章 相交线与平行线综合与测试课后复习题
展开
这是一份七年级下册第七章 相交线与平行线综合与测试课后复习题,共24页。试卷主要包含了下列说法中,错误的是,下列命题不正确的是,如图,,交于点,,,则的度数是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,下列四个选项中不能判断AD∥BC的是( )A. B.C. D.2、下列说法错误的是( )A.经过两点,有且仅有一条直线B.平面内过一点有且只有一条直线与已知直线垂直C.两点之间的所有连线中,线段最短D.平面内过一点有且只有一条直线与已知直线平行3、如图,如果将图中任意一条线段沿方格线的水平或竖直方向平移1格称为“1步”,那么通过平移要使图中的3条线段首尾相接组成一个三角形,最少需要( )A.4步 B.5步 C.6步 D.7步4、如图,点E在的延长线上,能判定的是( )A. B.C. D.5、下列说法中,错误的是( )A.两点之间线段最短B.若AC=BC,则点C是线段AB的中点C.过直线外一点有且只有一条直线与已知直线平行D.平面内过直线外一点有且只有一条直线与已知直线垂直6、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )A.39° B.41° C.49° D.51°7、如图,下列条件能判断直线l1//l2的有( )①;②;③;④;⑤A.1个 B.2个 C.3个 D.4个8、下列命题不正确的是( )A.直角三角形的两个锐角互补 B.两点确定一条直线C.两点之间线段最短 D.三角形内角和为180°9、如图,,交于点,,,则的度数是( )A.34° B.66° C.56° D.46°10、如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EFHC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①ADBC;②GK平分∠AGC;③∠DGH=37°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有( )A.4个 B.3个 C.2个 D.1个第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,如果______,那么.2、将含30°角的三角板如图摆放,ABCD,若=20°,则的度数是______.3、如图,ADBC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是2,则△BOC的面积是 ___.4、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.证明:∵(已知),∴(垂直的定义).∴________,∵(已知),∴________(依据1:________),∴(依据2:________).5、如图,若∠1+∠2=180°,∠3=70°,则∠4=_______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知AB∥CD,BE平分∠ABC,DB平分∠CDF,且∠ABC+∠CDF=180°.求证:BE⊥DB.证明:∵AB∥CD∴∠ABC=∠BCD( )∵∠ABC+∠CDF=180°( )∴∠BCD+∠CDF=180°( )∴BC∥DF( )于是∠DBC=∠BDF( )∵BE平分∠ABC,DB平分∠CDF∴∠EBC=∠ABC,∠BDF= ( )∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF)即∠EBD= ∴BE⊥DB( )2、如图,方格纸中每个小正方形的边长为1cm,点A、B、C均为格点.(1)根据要求画图:①过C点画直线MN∥AB;②过点C画AB的垂线,垂足为D点.(2)图中线段 的长度表示点A到直线CD的距离;(3)三角形ABC的面积= cm2.3、如图,点A在的一边OA上.按要求画图并填空.(1)过点A画直线,与的另一边相交于点B;(2)过点A画OB的垂线AC,垂足为点C;(3)过点C画直线,交直线AB于点D;(4)直接写出______°;(5)如果,,,那么点A到直线OB的距离为______.4、已知:如图,,.求证:.5、如图,在6×6的正方形网格中,每个小正方形的边长是1,点M、N、P、Q均为格点(格点是指每个小正方形的顶点),线段MN经过点P.(1)过点P画线段AB,使得线段AB满足以下两个条件:①AB⊥MN;②;(2)过点Q画MN的平行线CD,CD与AB相交于点E;(3)若格点F使得△PFM的面积等于4,则这样的点F共有 个. -参考答案-一、单选题1、D【解析】【分析】直接利用平行线的判定定理分析得出答案.【详解】解:A、已知,那么AD∥BC,故此选项不符合题意;B、已知,那么AD∥BC,故此选项不符合题意;C、已知,那么AD∥BC,故此选项不符合题意;D、已知,那么AB∥CD,不能推出AD∥BC,故此选项符合题意;故选:D.【点睛】本题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.2、D【解析】【分析】根据垂线的性质、线段的性质、直线的性质、平行公理判断下列选项.【详解】解:由垂线的性质、线段的性质、直线的性质可知、、正确;A、根据直线的性质可知选项正确,不符合题意;B、根据垂线的性质可知选项正确,不符合题意;C、根据线段的性质可知选项正确,不符合题意;D、由平行公理可知选项不正确,需要保证该点不在已知直线上,符合题意;故选:D.【点睛】本题主要考查了垂线的性质、线段的性质、直线的性质、平行公理,解题的关键是掌握相关的概念.3、B【解析】【分析】根据图示和平移的性质,注意正确的计数,查清方格的个数,从而求出步数.【详解】解:由图形知,中间的线段向左平移1个单位,上边的直线向右平移2个单位,最下边的直线向上平移2个单位,只有这样才能使构造的三角形平移的次数最少,其它平移方法都多于5步.∴通过平移使图中的3条线段首尾相接组成一个三角形,最少需要5步.故选:B.【点睛】本题考查了图形的平移变换,注意平移不改变图形的形状和大小且平移前后图形对应点之间的连线应该互相平行,另外使平移后成为三角形.4、B【解析】【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.【详解】A. ,,故该选项不符合题意;B. ,,故该选项符合题意;C. ,,故该选项不符合题意; D. ,,故该选项不符合题意;故选B【点睛】本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.5、B【解析】【分析】根据线段公理可判断A,根据点C与线段AB的位置关系可判断B,根据平行公理可判断C,根据垂线公理可判断D即可.【详解】A. 两点之间线段最短,正确,故选项A不合题意;B. 若AC=BC,点C在线段AB外和线段AB上两种情况,当点C在线段AB上时,则点C是线段AB的中点,当点C不在线段AB上,则点C不是线段AB中点,不正确,故选项B符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,正确,故选项C不合题意;D. 平面内过直线外一点有且只有一条直线与已知直线垂直,正确,故选项D不合题意.故选B.【点睛】本题考查基本事实即公理,和线段的中点,掌握基本事实即公理,和线段的中点是解题关键.6、C【解析】【分析】由题意直接根据平行线的性质进行分析计算即可得出答案.【详解】解:如图,∵AB∥CD,∠C=131°,∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),∵AE∥CF,∴∠A=∠C=49°(两直线平行,同位角相等).故选:C.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.7、D【解析】【分析】根据平行线的判定定理进行依次判断即可.【详解】①∵∠1,∠3互为内错角,∠1=∠3,∴; ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;③∠4,∠5互为同位角,∠4=∠5,∴; ④∠2,∠3没有位置关系,故不能证明 ,⑤,,∴∠1=∠3,∴,故选D.【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.8、A【解析】【分析】根据直角三角形两锐角互余可直接进行判断.【详解】解:A、直角三角形的两个锐角互补,是假命题,符合题意;B、两点确定一条直线,是真命题,不符合题意;C、两点之间线段最短,是真命题,不符合题意;D、三角形内角和为,是真命题,不符合题意;故选A.【点睛】本题考查了假命题的判断,解题的关键是熟练掌握直角三角形两锐角互余.9、C【解析】【分析】由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵,,∴,∵,∴,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.10、B【解析】【分析】根据平行线的判定定理得到AD∥BC,故①正确;由平行线的性质得到∠AGK=∠CKG,等量代换得到∠AGK=∠CGK,求得GK平分∠AGC;故②正确;根据题意列方程得到∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,得到∠AGK=α+β,根据角平分线的定义即可得到结论.【详解】解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;∵∠FGA的余角比∠DGH大16°,∴90°-∠FGA-∠DGH=16°,∵∠FGA=∠DGH,∴90°-2∠FGA=16°,∴∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,∴∠AGK=α+β,∵GK平分∠AGC,∴∠CGK=∠AGK=α+β,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+α=β+α+β,∴β=18.5°,∴∠MGK=18.5°,故④错误,故选:B.【点睛】本题考查了平行线的判定和性质,角平分线的定义,对顶角性质,一元一次方程,正确的识别图形是解题的关键.二、填空题1、##∠ABC##∠CBA【解析】【分析】根据平行线的判定定理即可得到结论.【详解】解:,.故答案为.【点睛】本题考查了平行线的判定定理,熟练掌握同旁内角互补两直线平行是解题的关键.2、50°【解析】【分析】三角形的外角等于不相邻的两个内角和,同位角相等可得出,从而得到的值.【详解】解:如图故答案为:.【点睛】本题考察了三角形的外角,平行线的性质.解题的关键在于角度之间的转化和等量关系.3、3【解析】【分析】根据平行可得:与高相等,即两个三角形的面积相等,根据图中三角形之间的关系即可得.【详解】解:∵,∴与高相等,∴,又∵,∴,故答案为:3.【点睛】题目主要考查平行线间的距离相等,三角形面积的计算等,理解题意,掌握平行线之间的距离相等是解题关键.4、 同角的余角相等 内错角相等,两直线平行【解析】【分析】根据垂直的定义及平行线的判定定理即可填空.【详解】∵(已知),∴(垂直的定义).∴,∵(已知),∴(同角的余角相等),∴(内错角相等,两直线平行).故答案为:;;同角的余角相等;内错角相等,两直线平行.【点睛】此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.5、【解析】【分析】如图(见解析),先根据平行线的判定可得,再根据平行线的性质可得,然后根据邻补角的定义即可得.【详解】解:如图,,,,,,故答案为:.【点睛】本题考查了平行线的判定与性质、邻补角,熟练掌握平行线的判定与性质是解题关键.三、解答题1、两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义.【解析】【分析】结合条件与图形,读懂每一步推理及推理的依据,即可完成解答.【详解】∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABC+∠CDF=180°(已知),∴∠BCD+∠CDF=180°(等量代换),∴BC∥DF(同旁内角互补,两直线平行),于是∠DBC=∠BDF(两直线平行,内错角相等),∵BE平分∠ABC,DB平分∠CDF,∴∠EBC=∠ABC,∠BDF=∠CDF(角平分线定义),∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF),即∠EBD=90°,∴BE⊥DB(垂直的定义).故答案分别为;两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义【点睛】本题考查了平行线的判定与性质,角平分线的定义及垂直的定义等知识,根据题意读懂每步推理,弄清每步推理的依据是完成本题的关键.2、 (1)画图见详解.(2)AD##DA(3)2.5####【解析】【分析】(1)①根据方格纸的特点,过C点与AB平行的直线MN,应是过点C的相连的三个横方格左下角到右上角连成的对角线所在的直线.②过C点与AB垂直的直线CD,应是过点C的相连的三个竖方格左上角到右下角连成的对角线所在的直线.(2)因为CD与AB垂直,所以点A到CD的距离就是线段AD的长度.(3)三角形ABC的面积等于三角形所在的方格所形成的长方形的面积减掉三个小三角形的面积.(1)如图所示①直线MN即为所求作的图形;②CD即为所求的AB的垂线;(2)∵CD⊥AB∴点A到直线CD的距离就是线段AD的长度.(3)三角形ABC的面积=3×2-(1×2÷2+1×2÷2+1×3÷2)=6-3.5=2.5(cm2)【点睛】本题考查了作图-应用与设计作图、点到直线的距离、平行线的判定和性质、三角形的面积,解决本题的关键是准确画图.3、(1)图见解析;(2)图见解析;(3)图见解析;(4)90;(5).【解析】【分析】(1)根据垂线的画法即可得;(2)根据垂线的画法即可得;(3)根据平行线的画法即可得;(4)根据平行线的性质可得;(5)利用三角形的面积公式即可得.【详解】解:(1)如图,直线即为所求;(2)如图,垂线即为所求;(3)如图,直线即为所求;(4),,,,故答案为:90;(5),,即,解得,即点到直线的距离为,故答案为:.【点睛】本题考查了画垂线和平行线、平行线的性质、点到直线的距离等知识点,熟练掌握平行线的画法和性质是解题关键.4、见解析【解析】【分析】由题意得到∠1=∠A,再根据同位角相等,两直线平行即可得解.【详解】证明:,,,.【点睛】本题考查平行线的判定,熟记同位角相等,两直线平行是解题的关键.5、 (1)见解析(2)见解析(3)6【解析】【分析】(1)根据网格作图即可;(2)根据网格作图即可;(3)根据网格作图即可.(1)解:作图如下:(2)解:作图见(1)(3)如图:故符合题意的点F有6个.故答案为:6【点睛】本题考查了直线、射线、线段及平行公理的应用,解题的关键是准确作出图形.
相关试卷
这是一份初中数学第七章 相交线与平行线综合与测试课后作业题,共21页。试卷主要包含了下列命题中,为真命题的是,下列语句正确的个数是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题,共23页。试卷主要包含了如图,直线AB∥CD,直线AB,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共22页。试卷主要包含了如图,直线a,下列说法中不正确的是,下列说法正确的有等内容,欢迎下载使用。