![2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系章节测评试题(名师精选)第1页](http://m.enxinlong.com/img-preview/2/3/12712476/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系章节测评试题(名师精选)第2页](http://m.enxinlong.com/img-preview/2/3/12712476/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系章节测评试题(名师精选)第3页](http://m.enxinlong.com/img-preview/2/3/12712476/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十五章 平面直角坐标系综合与测试当堂检测题
展开这是一份2021学年第十五章 平面直角坐标系综合与测试当堂检测题,共27页。试卷主要包含了点在,已知点A,如果点P,若平面直角坐标系中的两点A,已知点M等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系中,点P(-2,3)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、在平面直角坐标系中,点的坐标为,将点向左平移个单位长度,再向上平移个单位长度得到点,则点的坐标为( )
A. B. C. D.
3、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )
A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)
4、点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
6、如果点P(m,n)是第三象限内的点,则点Q(-n,0)在( )
A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上
7、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则a+b的值是( )
A.2 B.-2 C.4 D.-4
8、已知点M(m,﹣1)与点N(3,n)关于原点对称,则m+n的值为( )
A.3 B.2 C.﹣2 D.﹣3
9、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )
A.离北京市100千米 B.在河北省
C.在怀来县北方 D.东经114.8°,北纬40.8°
10、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )
A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点M坐标为,点M到x轴距离为______.
2、已知点与点关于原点对称,则a-b的值为________.
3、平面直角坐标系中,点P(3,-4)到x轴的距离是________.
4、点A关于轴的对称点坐标是,则点关于轴的对称点坐标是_____.
5、在平面直角坐标系中,与点(2,-7)关于y轴对称的点的坐标为____.
三、解答题(10小题,每小题5分,共计50分)
1、如图是某地火车站及周围的简单平面图.(图中每个小正方形的边长代表1千米)
(1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;
(2)在(1)中所建的坐标平面内,若学校E的位置是(﹣3,﹣3),请在图中标出学校E的位置.
2、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).
(1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
(2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
(3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
3、如图所示,在平面直角坐标系中,的顶点坐标分别是,和.
(1)已知点关于轴的对称点的坐标为,求,的值;
(2)画出,且的面积为 ;
(3)画出与关于轴成对称的图形,并写出各个顶点的坐标.
4、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:
(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;
(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;
(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由.
5、格点三角形(顶点是网格线的交点的三角形)△ABC在平面直角坐标系中的位置如图所示.
(1)A点坐标为 ;A点关于y轴对称的对称点A1坐标为 .
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)请直接写出△A1B1C1的面积.
6、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′.
(1)根据要求在网格中画出相应图形;
(2)写出△A′B′C′三个顶点的坐标.
7、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请写出对称中心M点的坐标 .
8、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2的坐标.
9、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?
10、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.
(1)请在图中标出点A和点C;
(2)△ABC的面积是 ;
(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .
-参考答案-
一、单选题
1、B
【分析】
根据点横纵坐标的正负分析得到答案.
【详解】
解:点P(-2,3)在第二象限,
故选:B.
【点睛】
此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.
2、A
【分析】
利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.
【详解】
解:∵点A的坐标为(2,1),将点A向左平移3个单位长度,再向上平移1个单位长度得到点A′,
∴点A′的横坐标是2-3=-1,纵坐标为1+1=2,即(-1,2).
故选:A.
【点睛】
本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.
3、C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.
【详解】
解:半径为1个单位长度的半圆的周长为2π×1=π,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,
∴点P每秒走个半圆,
当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),
…,
∵2021÷4=505余1,
∴P的坐标是(2021,1),
故选:C.
【点睛】
此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.
4、C
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
5、A
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
6、A
【分析】
根据平面直角坐标系中象限的坐标特征可直接进行求解.
【详解】
解:∵点P(m,n)是第三象限内的点,
∴n<0,
∴-n>0,
∴点Q(-n,0)在x轴正半轴上;
故选A.
【点睛】
本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键.
7、A
【分析】
直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.
【详解】
解:依题意可得a=-1,b=3
∴a+b=2
故选A.
【点睛】
此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
8、C
【分析】
利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.
【详解】
解:点与点关于原点对称,
,,
故.
故选:C.
【点睛】
本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.
9、D
【分析】
若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.
【详解】
离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,
东经114.8°,北纬40.8°为准确的位置信息.
故选:D.
【点睛】
本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.
10、B
【分析】
利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标.
【详解】
解:∵ A(-4,3) ,
∴关于y轴对称点B的坐标为(4,3).
故答案为:B.
【点睛】
本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键.
二、填空题
1、7
【分析】
根据点(x,y)到x轴的距离等于|y|求解即可.
【详解】
解:点M 到x轴距离为|-7|=7,
故答案为:7.
【点睛】
本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解答的关键.
2、5
【分析】
直接利用关于原点对称点的性质得出a,b的值,代入求解即可.
【详解】
解:∵点A(a,1)与点B(﹣4,b)关于原点对称,
∴,,
∴,
故答案为:5.
【点睛】
本题考查了关于原点对称点的性质及求代数式的值,正确得出a,b的值是解题的关键.
3、4
【分析】
根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.
【详解】
解:点P(3,-4)到x轴的距离为|﹣4|=4.
故答案为:4.
【点睛】
此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.
4、(2,1)
【分析】
根据关于坐标轴对称的点的特征,先求得的坐标,进而求得的坐标
【详解】
解:∵点A关于轴的对称点坐标是,
∴点坐标是
点关于轴的对称点坐标是
故答案为:
【点睛】
本题考查了关于坐标轴对称的点的坐标特征,掌握关于坐标轴对称的点的坐标特征是解题的关键.①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数
5、(-2,-7)
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.
【详解】
解:点(2,-7)关于y轴对称的点的坐标是(-2,-7).
故答案为:(-2,-7).
【点睛】
解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
三、解答题
1、(1)见解析,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3);(2)见解析
【分析】
(1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标.
(2)根据点的坐标的意义描出点E.
【详解】
解:(1)平面直角坐标系如图所示,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3).
(2)如图,点E即为所求.
【点睛】
本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.
2、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
【分析】
(1)根据一次反射点和二次反射点的定义求解即可;
(2)根据二次反射点的意义求解即可;
(3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
【详解】
解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
点A关于直线:x=2的二次反射点为(5,1)
故答案为: (-1,1);(5,1).
(2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,
∴
解得,
故答案为: -2.
(3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
∵当与点B重合时,=-2,
∴当<-2时,△与△BCD无公共点.
当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
∵当与点D重合时,=1,
∴当>1时,△与△BCD无公共点.
综上,若△与△BCD无公共点,的取值范围是<-2,或>1.
【点睛】
本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
3、(1),;(2)作图见详解;13;(3)作图见详解;,,.
【分析】
(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;
(2)先确定A、B、C点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;
(3)先确定A、B、C三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可.
【详解】
解:(1)∵点关于x轴的对称点P的坐标为,
∴,;
(2)如图:即为所求,
,
故答案为:13;
(3)如图:A、B、C点关于y轴的对称点为:,,,顺次连接,
∴即为所求
,,.
【点睛】
此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键.
4、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1即可;
(2)分别作出A,B,C的对应点A2,B2,C2即可;
(3)根据轴对称的定义判断即可.
【详解】
解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);
(2)如图,△A2B2C2即为所求,点A2的坐标(4,3);
(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
【点睛】
本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
5、(1)(-2,3);(2,3);(2)见解析;(3)
【分析】
(1)根据平面直角坐标系可得A点坐标,再根据关于y轴对称的点的坐标特点可得A1坐标;
(2)首先确定A、B、C三点坐标,再连接即可;
(3)根据割补求解可得答案.
【详解】
解:(1)A点坐标为 (-2,3);
A点关于y轴对称的对称点A1坐标为 (2,3).
故答案为:(-2,3);(2,3);
(2)如图所示△A1B1C1;
(3)△A1B1C1的面积:2×2-×1×2-×1×2-×1×1=.
【点睛】
本题主要考查了作图-轴对称变换,关键是掌握图形都是由点组成的,作轴对称图形,就是寻找特殊点的对称点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.
6、(1)见解析;(2),,
【分析】
(1)利用平移变换的性质分别作出,,的对应点,,即可.
(2)根据平面直角坐标系写出,,的坐标.
【详解】
解:(1)如图,△即为所求,
(2)根据平面直角坐标系可得:,,.
【点睛】
本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.
7、(1)①见解析;②见解析;(2)M(2,1)
【分析】
(1)①利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;
②利用中心对称的性质分别作出A,B,C的对应点A2,B2,C2即可;
(3)对应点连线的交点M即为所求.
【详解】
解:(1)①如图,△A1B1C1即为所求;
②如图,△A2B2C2即为所求;
(2)如图,点M即为所求,M(2,1),
故答案为:(2,1).
【点睛】
本题考查作图−旋转变换,平移变换等知识,解题的关键是掌握旋转变换,平移变换的性质,属于中考常考题型.
8、(1)画图见解析,;(2)画图见解析,(-2,2)
【分析】
(1)根据关于y轴的点的坐标特征分别作出△ABC的各个顶点关于x轴的对称点,然后连线作图即可;
(2)利用网格特点和旋转的性质画出点A2、B、C2的坐标,然后描点即可得到△A2BC2,然后写出点A2的坐标.
【详解】
解:(1)如图,即为所求;
∵是A(2,4)关于x轴对称的点,
∴根据关于x轴对称的点的坐标特征可知:;
(2)如图,即为所求,
∴的坐标为(-2,2).
【点睛】
本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键.
9、东经度,南纬度可以表示为.
【分析】
根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示.
【详解】
解:由题意可知东经度,南纬度,可用有序数对表示.
故东经度,南纬度表示为.
【点睛】
本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.
10、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).
【分析】
(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.
(2)得出△ABC的底和高再由三角形面积公式计算即可.
(3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).
【详解】
解:(1)如图所示,点A为(-4,0),
∵点C与点A关于y轴对称
∴点C坐标为(4,0)
(2)由×底×高有
(3)∵S△ACD=S△ABC,AC=AC
∴
即D点的纵坐标为4或-4
又∵D点在y轴上
故D点坐标为(0,4)或(0,-4).
【点睛】
本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后练习题,共30页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份初中数学第十五章 平面直角坐标系综合与测试课后测评,共28页。试卷主要包含了一只跳蚤在第一象限及x轴,若平面直角坐标系中的两点A,已知点P,根据下列表述,能确定位置的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共28页。试卷主要包含了点在,在平面直角坐标系中,点,已知点A等内容,欢迎下载使用。