![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专项练习试卷(含答案详解)第1页](http://m.enxinlong.com/img-preview/2/3/12712440/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专项练习试卷(含答案详解)第2页](http://m.enxinlong.com/img-preview/2/3/12712440/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专项练习试卷(含答案详解)第3页](http://m.enxinlong.com/img-preview/2/3/12712440/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共30页。试卷主要包含了若平面直角坐标系中的两点A,点P在第二象限内,P点到x,已知点在一等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点P的坐标为(﹣3,2),则点P位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
3、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )
A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)
4、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则a+b的值是( )
A.2 B.-2 C.4 D.-4
5、如图,在平面直角坐标系中,已知“蝴蝶”上有两点,,将该“蝴蝶”经过平移后点的对应点为,则点的对应点的坐标为( )
A. B. C. D.
6、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )
A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)
7、点(a,﹣3)关于原点的对称点是(2,﹣b),则a+b=( )
A.5 B.﹣5 C.1 D.﹣1
8、在平面直角坐标系中,点关于原点对称的点的坐标是( )
A. B. C. D.
9、已知点在一、三象限的角平分线上,则的值为( )
A. B. C. D.
10、若点在第一象限,则a的取值范围是( )
A. B. C. D.无解
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.
2、如图所示,在平面直角坐标系中,射线OA将由边长为1的7个小正方形组成的图案的面积分成相等的两部分,则点A的坐标为________.
3、已知点与点关于轴对称,则________.
4、已知点A的坐标为,O为坐标原点,连结OA,将线段OA绕点О顺时针旋转90°得到线段,则点的坐标为______.
5、在平面直角坐标系中,点与,关于y轴对称,则的值为____________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在平面直角坐标系中、ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1)
(1)在图中画出ABC关于点O的中心对称图形,并写出点,点,点的坐标;
(2)求的面积.
2、已知:如图,在平面直角坐标系中.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );
(2)直接写出△ABC的面积为 ;
(3)在x轴上画点P,使PA+PC最小.
3、已知点P(3a﹣15,2﹣a).
(1)若点P到x轴的距离是1,试求出a的值;
(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;
(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.
4、如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0).
(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;
(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并写出点E的坐标;
(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,
①画出线段MN并写出点M的坐标;
②直接写出线段MN与线段CD的位置关系.
5、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).
(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;
(2)在图中作出A1B1C1关于y轴对称的A2B2C2;
(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 .
6、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出其顶点坐标;
(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是__________________.
7、如图,在平面直角坐标系中,已知线段AB;
(1)请在y轴上找到点C,使△ABC的周长最小,画出△ABC,并写出点C的坐标;
(2)作出△ABC关于y轴对称的△A'B'C';
(3)连接BB',AA'.求四边形AA'B'B的面积.
8、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且
(1)求证:点A为线段BC的中点.
(2)求点D的坐标.
9、如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).
(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;
(2)写出点A1 ,B1 ,C1 的坐标.
10、在如图所示的平面直角坐标系中,A点坐标为.
(1)画出关于y轴对称的;
(2)求的面积.
-参考答案-
一、单选题
1、B
【分析】
根据平面直角坐标系中四个象限中点的坐标特点求解即可.
【详解】
解:∵点P的坐标为(﹣3,2),
∴则点P位于第二象限.
故选:B.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
2、C
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
3、B
【分析】
观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.
【详解】
解:点的运动规律是每运动四次向右平移四个单位,
,
动点第2021次运动时向右个单位,
点此时坐标为,
故选:B.
【点睛】
本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.
4、A
【分析】
直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.
【详解】
解:依题意可得a=-1,b=3
∴a+b=2
故选A.
【点睛】
此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
5、D
【分析】
先根据与点对应,求出平移规律,再利用平移特征求出点B′坐标即可
【详解】
解:∵与点对应,
∴平移1-3=-2,3-7=-4,
先向下平移4个单位,再向左平移2个单位,
∵点B(7,7),
∴点B′(7-2,7-4)即.
如图所示
故选:D.
【点睛】
本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键.
6、C
【分析】
点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.
【详解】
∵P点到x、y轴的距离分别是4、3,
∴点P的纵坐标绝对值为4、横坐标的绝对值为3,
∵点P在第二象限内,
∴点P的坐标为(-3,4),
故选:C.
【点睛】
本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.
7、B
【分析】
根据关于原点对称的点的坐标特证构造方程-b=3,a=−2,再解方程即可得到a、b的值,进而可算出答案.
【详解】
解:∵点(a,﹣3)关于原点的对称点是(2,﹣b),
∴−b=3,a=−2,
解得:b=-3,a=−2,
则,
故选择B.
【点睛】
本题主要考查了关于原点对称的点的坐标:掌握关于原点对称的特征,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).关键是利用对称性质构造方程.
8、A
【分析】
关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.
【详解】
解:点关于原点对称的点的坐标是:
故选A
【点睛】
本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.
9、A
【分析】
根据平面直角坐标系一三象限角平分线上点的特征是横纵坐标相等列式计算即可;
【详解】
∵点在一、三象限的角平分线上,
∴,
∴;
故选A.
【点睛】
本题主要考查了一三象限角平分线上点的特征,准确分析计算是解题的关键.
10、B
【分析】
由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.
【详解】
解: 点在第一象限,
由①得:
由②得:
故选B
【点睛】
本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.
二、填空题
1、或
【分析】
根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可.
【详解】
解:∵点,,且ABx轴,
∴y=2,
∵点到轴的距离是到轴距离的2倍,
∴,
∴,
∴B(-4,2)或(4,2).
故答案为(-4,2)或(4,2).
【点睛】
本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键.
2、(,3),3)
【分析】
过A点作AB⊥y轴于B点,作AC⊥x轴于C点,由于射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,所以两边的面积分别为3.5,△AOB面积为5.5,即OB×AB=5.5,可解AB,则A点坐标可求.
【详解】
解:过A点作AB⊥y轴于B点,作AC⊥x轴于C点,
则AC=OB,AB=OC.
∵正方形的边长为1,
∴OB=3.
∵射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,
∴两边的面积分别为3.5.
∴△AOB面积为3.5+2=5.5,即OB×AB=5.5,
×3×AB=5.5,解得AB=.
所以点A坐标为(,3).
故答案为:(,3).
【点睛】
本题主要考查了点的坐标、三角形面积,解题的关键是过某点作x轴、y轴的垂线,垂线段长度再转化为点的坐标.
3、12
【分析】
根据关于轴对称的点,纵坐标相同,横坐标互为相反数分别求出、的值,然后代入代数式进行计算即可求解.
【详解】
解:点与点关于轴对称,
,,
.
故答案为:.
【点睛】
本题考查了关于轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:关于轴对称的点,纵坐标相同,横坐标互为相反数.
4、(b,-a)
【分析】
设A在第一象限,画出图分析,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.根据旋转的性质,A1B1=AB,OB1=OB.综合A1所在象限确定其坐标,其它象限解法完全相同.
【详解】
解:设A在第一象限,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.
∵A(a,b),
∴OB=a,AB=b,
∴A1B1=AB=b,OB1=OB=a,
因为A1在第四象限,所以A1(b,﹣a),
A在其它象限结论也成立.
故答案为:(b,﹣a),
【点睛】
本题考查了图形的旋转,设点A在某一象限是解题的关键.
5、5
【分析】
关于轴对称的两个点的横坐标互为相反数,纵坐标不变,根据原理直接求解的值,再代入进行计算即可.
【详解】
解: 点与,关于y轴对称,
故答案为:5
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.
三、解答题
1、(1)点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1),画图见解析;(2)
【分析】
(1)先根据关于原点对称的点的坐标特征求出点,点,点的坐标,然后描出点,点,点,最后顺次连接点,点,点即可;
(2)根据的面积等于其所在的长方形面积减去周围三个三个小三角形面积求解即可.
【详解】
解:(1)∵是△ABC关于原点对称的中心对称图形, A(4,6),B(5,2),C(2,1),
∴点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1);
∴如图所示,即为所求;
(2)由图可知 .
【点睛】
本题主要考查了画中心对称图形,关于原点对称的点的坐标特征,三角形面积,解题的关键在于能够熟练掌握关于原点对称的点的坐标特征.
2、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析
【分析】
(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
(2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;
(3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.
【详解】
解:(1)如图所示:△A1B1C1即为所求,
A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);
故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);
(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;
故答案为:5;
(3)如图所示:点P即为所求.
【点睛】
本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.
3、(1)或;(2)或;(3)或.
【分析】
(1)根据“点到轴的距离是1”可得,由此即可求出的值;
(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;
(3)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案.
【详解】
解:(1)点到轴的距离是1,且,
,即或,
解得或;
(2)当时,点的坐标为,
则点的坐标为,即,
当时,点的坐标为,
则点的坐标为,即,
综上,点的坐标为或;
(3)点位于第三象限,
,解得,
点的横、纵坐标都是整数,
或,
当时,,则点的坐标为,
当时,,则点的坐标为,
综上,点的坐标为或.
【点睛】
本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键.
4、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)①作图见解析,点M的坐标为(1,-5);②MN∥CD.
【分析】
(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;
(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;
(3)①分别作出A,B的对应点M,N,连接即可;
②由平行线的传递性可得答案.
【详解】
解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);
(2)如图所示,线段AE即为所求,点E的坐标为(3,3);
(3)①如图所示,线段MN即为所求,点M的坐标为(1,-5);
②∵线段MN与线段AB关于原点成中心对称,
∴MN∥AB,
∵线段CD是由线段AB平移得到的,
∴CD∥AB,
∴MN∥CD.
【点睛】
本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题.
5、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)
【分析】
(1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;
(2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;
(3)利用平移变换的性质,轴对称变换的性质解决问题即可.
【详解】
解:(1)如图,△A1B1C1即为所求;
(2)如图,△A2B2C2即为所求;
(3)由题意得:P(﹣a﹣4,b﹣5).
故答案为:(﹣a﹣4,b﹣5);
【点睛】
本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.
6、(1)见解析;(2)A2(-2,0),B2(-1,3),C2(1,2),(3)P(m-3,-n)
【分析】
(1)直接利用关于轴对称点的性质得出答案;
(2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;
(3)直接利用平移变换的性质得出点的坐标.
【详解】
解:(1)如图所示:△就是所要求作的图形;
(2)如图所示:△就是所要求作的图形,其顶点坐标为A2(-2,0),B2(-1,3),C2(1,2);
(3)如果上有一点经过上述两次变换,那么对应上的点的坐标是:.
故答案为:.
【点睛】
此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.
7、(1)见详解,点C 的坐标为(0,4);(2)见详解;(3)16
【分析】
(1)作B点关于y轴的对称点 连接与y轴的交点即为C点,即可求出点C的坐标;
(2)根据网格画出△ABC关于y轴对称的△A'B'C'即可;
(3)根据梯形面积公式即可求四边形AA'B'B的面积.
【详解】
解:(1)所要求作△ABC 如图所示,点C的坐标为(0,4);
(2)△A'B'C'即为所求;
(3)点A,B,A',B'的坐标分别为:(﹣3,1)、(﹣1,5)、(3,1)、(1,5);
∴四边形AA'B'B的面积为:
= (2+6)×4
=16.
【点睛】
本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称的性质.
8、(1)证明见解析,(2)(8,2).
【分析】
(1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.
【详解】
(1)证明:过点C作CQ⊥OA于Q,
∵点B的坐标是,点C的坐标为,
∴CQ=OB=4,
∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,
∴△CQA≌△BOA,
∴CA=AB,
∴点A为线段BC的中点.
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,
∵,
∴∠CRB=∠DSB=∠CBD=90°,
∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,
∴∠CBR=∠SDB,
∵,
∴∠BCD=∠BDC=45°,
∴CB=DB,
∴△CRB≌△BSD,
∴CR=SB,RB=DS,
∵点B的坐标是,点C的坐标为,
∴CR=SB=6,RB=DS=8,
∴OS=SB-OB=2,
点D的坐标为(8,2).
【点睛】
本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.
9、(1)见解析;(2)(1,5),(3,0),(4,3)
【分析】
(1)根据对称性即可在图中作出△ABC关于y轴对称的图形△A1B1C1;
(2)结合(1)即可写出点A1,B1,C1的坐标.
【详解】
解:(1)如图,△A1B1C1即为所求;
(2)A1(1,5),B1(3,0),C1(4,3);
故答案为:(1,5),(3,0),(4,3).
【点睛】
本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称性质.关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标相同.
10、(1)见解析;(2).
【分析】
(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;
(2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.
【详解】
(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;
(2)S△ABC=3×3=.
【点睛】
本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共25页。试卷主要包含了已知点A象限,如果点P,平面直角坐标系内一点P等内容,欢迎下载使用。
这是一份初中数学第十五章 平面直角坐标系综合与测试同步测试题,共24页。试卷主要包含了已知点M,点A的坐标为,则点A在,将点P,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共25页。试卷主要包含了点P关于原点对称的点的坐标是,在平面直角坐标系中,点A等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)