开学活动
搜索
    上传资料 赚现金

    2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专题练习试题(精选)

    2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专题练习试题(精选)第1页
    2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专题练习试题(精选)第2页
    2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专题练习试题(精选)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练,共27页。试卷主要包含了点A个单位长度.,已知点A等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点关于原点对称的点的坐标是(    A. B. C. D.2、若点Pm,1)在第二象限内,则点Q(1﹣m,﹣1)在(  )A.第四象限 B.第三象限 C.第二象限 D.第一象限3、已知点Aa+9,2a+6)在y轴上,a的值为(  )A.﹣9 B.9 C.3 D.﹣34、点A(-3,1)到y轴的距离是(  )个单位长度.A.-3 B.1 C.-1 D.35、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为(    A. B. C. D.6、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的(    A.正东方向 B.正西方向 C.正南方向 D.正北方向7、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为(  )A.-1008 B.-1010 C.1012 D.-10128、点向上平移2个单位后与点关于y轴对称,则    ).A.1 B. C. D.9、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为(    A.2 B.﹣2 C.3 D.﹣310、在△ABC中,ABAC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是(    A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是______.2、如图,平面直角坐标系中,是边长为2的等边三角形,作关于点成中心对称,再作于点成中心对称,如此作下去,则的顶点的坐标是________.3、在平面直角坐标系中,点P(﹣2,﹣5)关于原点对称的点的坐标是  ___________________.4、在平面直角坐标系中,点P(2,﹣3)到x轴的距离为 ___.5、如果点Pm+3,2m﹣4)在y轴上,那么m的值是 _____.三、解答题(10小题,每小题5分,共计50分)1、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是(1)求的面积;(2)在图中作出关于轴的对称图形(3)写出点的坐标.2、在平面直角坐标系中,的顶点坐标是(1)画出绕点B逆时针旋转(2)画出关于点O的中心对称图形(3)可由绕点M旋转得,请写出点M的坐标:________.3、在平面直角坐标系xOy中,对于任意图形G及直线l1l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的<l1l2>伴随图形.例如:点P(2,1)的<x轴,y轴>伴随图形是点P'(-2,-1).(1)点Q(-3,-2)的<x轴,y轴>伴随图形点Q'的坐标为       (2)已知At,1),Bt-3,1),Ct,3),直线m经过点(1,1).①当t=-1,且直线my轴平行时,点A的<x轴,m>伴随图形点A'的坐标为       ②当直线m经过原点时,若△ABC的<x轴,m>伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.4、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.5、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标:      (2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C26、在平面直角坐标系中,的顶点坐标分别为(1)关于y轴的对称图形为画出,(点A与点对应,点B与点对应,点C与点对应);(2)连接,在的下方画出以为底的等腰直角,并直接写出点P的坐标.7、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点AC的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△ABC′.(3)求△ABC的面积        8、如图,在平面直角坐标系xOy中,A(1,﹣2).(1)作△ABC关于y轴的对称图形△ABC′;(2)写出B′和C′的坐标;(3)求△ABC的面积.9、如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0).(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并写出点E的坐标;(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M①画出线段MN并写出点M的坐标;②直接写出线段MN与线段CD的位置关系.10、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(aβ)表示点P在平面内的位置,并记为P(aβ).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.(2)如果点AB在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积. -参考答案-一、单选题1、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.2、A【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点Pm,1)在第二象限内,m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、A【分析】根据y轴上点的横坐标为0列式计算即可得解.【详解】解:∵点Aa+9,2a+6)在y轴上,a+9=0,解得:a=-9,故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.4、D【分析】由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.【详解】解:由题意知轴的距离为轴的距离是个单位长度故选D.【点睛】本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点轴的距离=;到轴的距离=5、C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.6、B【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.7、C【分析】首先确定角码的变化规律,利用规律确定答案即可.【详解】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A72,0),A114,0)…,∵2021÷4=505余1,∴点A2021x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,A2021的坐标为(1012,0).故选:C【点睛】本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.8、D【分析】利用平移及关于y轴对称点的性质即可求解.【详解】解:把向上平移2个单位后得到点∵点与点关于y轴对称,故选:D.【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.9、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.【详解】解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,a=3,故选:C.【点睛】此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.10、A【分析】由题意可知BOCO,又ABAC,得点Ay轴上,即可求解.【详解】解:由题意可知BOCO∵又ABACAOBC∴点Ay轴上,∴选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A.【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.二、填空题1、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7).【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.2、【分析】首先根据△是边长为2的等边三角形,可得的坐标为的坐标为;然后根据中心对称的性质,分别求出点的坐标各是多少;最后总结出的坐标的规律,求出的坐标是多少即可.【详解】解:是边长为2的等边三角形,的坐标为:的坐标为:与△关于点成中心对称,与点关于点成中心对称,的坐标是:与△关于点成中心对称,与点关于点成中心对称,的坐标是:与△关于点成中心对称,与点关于点成中心对称,的坐标是:的横坐标是:的横坐标是:为奇数时,的纵坐标是:,当为偶数时,的纵坐标是:顶点的纵坐标是:是正整数)的顶点的坐标是:的顶点的横坐标是:,纵坐标是:故答案为:【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出的横坐标和纵坐标是解题的关键.3、(2,5)【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数即可求解.【详解】解:点P(﹣2,﹣5)关于原点对称的点的坐标是(2,5)故答案为:(2,5)【点睛】本题考查了关于原点对称的两个点的坐标特征,掌握“关于原点对称的点的横坐标、纵坐标分别互为相反数”是解题的关键.4、3【分析】根据点的纵坐标的绝对值是点到轴的距离,可得答案.【详解】在平面直角坐标系中,点P(2,﹣3)到轴的距离为3.故答案为:3.【点睛】本题考查了点的坐标,点的纵坐标的绝对值是点到轴的距离,横坐标的绝对值是点到轴的距离.5、-3【分析】Py轴上则该点横坐标为0,可解得m的值.【详解】解:y轴上,m+3=0,解得m=-3.故答案为:-3.【点睛】本题主要考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.三、解答题1、(1);(2)见解析;(3)A1(1,5),C1(4,3)【分析】(1)根据三角形面积公式进行计算即可得;(2)可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y轴的对称点,连接这些对称点即可得(3)根据(2)即可写出.【详解】解:(1)(2)如下图所示: (3)A1(1,5);C1(4,3)【点睛】本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.2、(1)画图见解析;(2)画图见解析;(3)【分析】(1)分别确定逆时针旋转后的对应点再顺次连接从而可得答案;(2)分别确定关于原点对称的对称点再顺次连接从而可得答案;(3)如图,由是旋转对应点,则到旋转中心的距离相等,到旋转中心的距离相等,可得线段的垂直平分线的交点即为旋转中心,再根据在坐标系内的位置写出其坐标即可.【详解】解:(1)如图,是所求作的三角形,(2)如图,是所求作的三角形;(3)如图,是旋转对应点, 到旋转中心的距离相等,到旋转中心的距离相等,则线段的垂直平分线的交点即为旋转中心,其坐标为:【点睛】本题考查的是旋转作图,中心对称的作图,确定旋转中心,掌握旋转的性质是解本题的关键.3、(1)(3,2)(2)①(3,-1);②-1<t<1或2<t<4【分析】(1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;(2)①时,点坐标为,直线,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;②由题意知直线为直线三点的轴,的伴随图形点坐标依次表示为:,由题意可得,或解出的取值范围即可.(1)解:由题意知沿轴翻折得点坐标为沿轴翻折得点坐标为故答案为:(2)①解:.点坐标为,直线沿轴翻折得点坐标为沿直线翻折得点坐标为即为故答案为:②解:∵直线经过原点∴直线为的伴随图形点坐标先沿轴翻折,点坐标依次为然后沿直线翻折,点坐标依次表示为:由题意可知:解得:【点睛】本题考查了直角坐标系中的点对称,几何图形翻折.解题的关键在于正确的将翻折后的点坐标表示出来.4、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.5、(1)(4,﹣1);(2)见解析;(3)见解析.【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】(1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A1B1C1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.6、(1)作图见解析;(2)作图见解析,【分析】(1)分别求出ABC关于y轴对称的点,连接即可;(2)根据轴对称的性质计算即可;【详解】(1)由题可知,ABC关于y轴对称的点为,作图如下;(2)根据题意可得:,设与y轴交于点M,则是等腰直角三角形,【点睛】本题主要考查了轴对称的性质应用和等腰直角三角形的性质,准确作图计算是解题的关键.7、(1)见解析;(2)见解析;(3)4.【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△ABC′;(3)利用面积加减法计算.(1)如图所示:(2)解:如图所示:(3)解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,故答案为:4.【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.8、(1)见解析;(2)B′(﹣5,6),C′(-7,2);(3)16【分析】(1)利用轴对称的性质分别作出ABC的对应点A′,B′,C′即可;(2)根据点的位置写出坐标即可;(3)把三角形面积看成长方形面积减去周围三个三角形面积即可.【详解】解:(1)如图,△ABC′即为所求;(2)B′(﹣5,6),C′(-7,2);(3)SABC=8×6﹣×8×4﹣×2×4﹣×6×4=16.【点睛】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.9、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)①作图见解析,点M的坐标为(1,-5);②MNCD【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE(3)①分别作出AB的对应点MN,连接即可;②由平行线的传递性可得答案.【详解】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,点E的坐标为(3,3);(3)①如图所示,线段MN即为所求,点M的坐标为(1,-5);②∵线段MN与线段AB关于原点成中心对称,MNAB∵线段CD是由线段AB平移得到的,CDABMNCD【点睛】本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题.10、(1)6,30°;(2)见解析,30【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.【详解】(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.答案:6,30°(2)如图所示:A(5,30),B(12,120),∴∠BOX=120°,∠AOX=30°,∴∠AOB=90°,OA=5,OB=12,∴△AOB的面积为OA·OB=30.【点睛】本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义. 

    相关试卷

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共30页。试卷主要包含了在平面直角坐标系中,点P,点P在第二象限内,P点到x,如图,A等内容,欢迎下载使用。

    2021学年第十五章 平面直角坐标系综合与测试当堂检测题:

    这是一份2021学年第十五章 平面直角坐标系综合与测试当堂检测题,共27页。试卷主要包含了点在,已知点A,如果点P,若平面直角坐标系中的两点A,已知点M等内容,欢迎下载使用。

    初中数学第十五章 平面直角坐标系综合与测试课后复习题:

    这是一份初中数学第十五章 平面直角坐标系综合与测试课后复习题,共26页。试卷主要包含了在下列说法中,能确定位置的是,已知A,如果点P等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map