![精品试题沪教版七年级数学第二学期第十五章平面直角坐标系专题攻克试题(精选)第1页](http://m.enxinlong.com/img-preview/2/3/12712322/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪教版七年级数学第二学期第十五章平面直角坐标系专题攻克试题(精选)第2页](http://m.enxinlong.com/img-preview/2/3/12712322/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪教版七年级数学第二学期第十五章平面直角坐标系专题攻克试题(精选)第3页](http://m.enxinlong.com/img-preview/2/3/12712322/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第十五章 平面直角坐标系综合与测试练习题
展开
这是一份2020-2021学年第十五章 平面直角坐标系综合与测试练习题,共27页。试卷主要包含了直角坐标系中,点A与点B关于,点P在第二象限内,P点到x,在平面直角坐标系中,点P,如图,A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点关于x轴对称的点的坐标是( )A. B. C. D.2、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是( )A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)3、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是( )A.直线x=﹣1 B.x轴 C.y轴 D.直线x=4、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)5、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A.原点中心对称 B.轴轴对称 C.轴轴对称 D.以上都不对6、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)7、在平面直角坐标系中,点P(﹣2,﹣3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、如图,矩形ABCD的边BC在x轴上,点A在第二象限,点D在第一象限,AB= ,OD=4,将矩形ABCD绕点O顺时针旋转,使点D落在x轴的正半轴上,则点C对应点的坐标是( )A.(,) B.(,) C.(,) D.(,)9、如图,A、B两点的坐标分别为A(-2,-2)、B(4,-2),则点C的坐标为( )A.(2,2) B.(0,0) C.(0,2) D.(4,5)10、小明在介绍郑州外国语中学位置时,相对准确的表述为( )A.陇海路以北 B.工人路以西C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点P(2,﹣3)与点Q(a,b)关于原点对称,则a+b=_____.2、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 ___.3、平面直角坐标系中,点P(-2,-5)到x轴距离是____.4、若点与点关于原点对称,则_________.5、若点P(m﹣1,5)与点Q(﹣3,n)关于原点成中心对称,则m﹣n的值是___.三、解答题(10小题,每小题5分,共计50分)1、在平面直角坐标系中,的顶点坐标分别为.(1)关于y轴的对称图形为画出,(点A与点对应,点B与点对应,点C与点对应);(2)连接,在的下方画出以为底的等腰直角,并直接写出点P的坐标.2、如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0).(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并写出点E的坐标;(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,①画出线段MN并写出点M的坐标;②直接写出线段MN与线段CD的位置关系.3、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1).顺次连接A、B、C、D得到四边形ABCD;4、如图,平面直角坐标系中ABC的三个顶点分别是A(-4,3),B(-2,4),C(-1,1).(1)将ABC绕点O逆时针旋转90°,画出旋转后的A1B1C1;(2)作出ABC关于点O的中心对称图形A2B2C2;(3)如果ABC内有一点P(a,b),请直接写出变换后的图形中对应点P1、P2的坐标.5、在平面直角坐标系中,的顶点,,的坐标分别为,,.与关于轴对称,点,,的对应点分别为,,.请在图中作出,并写出点,,的坐标.6、如图,平面直角坐标系中,的顶点都在格点上,已知点的坐标是.(1)点的坐标是______;(2)画出关于轴对称的,其中点、、的对应点分别为点、、;(3)直接写出的面积为______.7、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4).(1)画出线段AB关于y轴对称的线段A1B1,再画出线段A1B1关于x轴对称的线段A2B2;(2)点A2的坐标为 ;(3)若此平面直角坐标系中有一点M(a,b),点M关于y轴对称的对称点M1,点M1关于x轴对称的对称点M2,则点M2的坐标为 .8、已知点P(3a﹣15,2﹣a).(1)若点P到x轴的距离是1,试求出a的值;(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.9、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).(1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.10、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位后得到对应的;(2)再请你画出将沿x轴翻折后得到的;(3)若连接、,请你直接写出四边形的面积. -参考答案-一、单选题1、C【分析】根据若两点关于 轴对称,横坐标不变,纵坐标互为相反数,即可求解【详解】解:点关于x轴对称的点的坐标是 故选:C【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,横坐标不变,纵坐标互为相反数;若两点关于y轴对称,横坐标互为相反数,纵坐标不变是解题的关键.2、B【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.【详解】解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是.故选B.【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.3、B【分析】根据轴对称的性质判断即可.【详解】解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴故选:B.【点睛】本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.4、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标.【详解】解:∵ A(-4,3) ,∴关于y轴对称点B的坐标为(4,3).故答案为:B.【点睛】本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键.5、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案.【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称.故选A.【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系.掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键.6、C【分析】点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.【详解】∵P点到x、y轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.7、C【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.8、B【分析】由矩形可知AB=CD=,再由勾股定理可知OC=2,则C点坐标为(2,0),D点坐标为(2,),旋转后D’点坐标为(4,0),则C’点坐标为(1,).【详解】∵四边形ABCD为矩形∴AB=CD=,∠DOC=60°在中有则C点坐标为(2,0),D点坐标为(2,)又∵旋转后D点落在x轴的正半轴上∴可看作矩形ABCD中绕点O顺时针旋转了60°得到如图所示,过C’作y轴平行线交x轴于点M其中∠DOC=∠D’OC’=60°,∠OMC’=90°,OC=OC’=2∴OM==1,MC’==∴C’坐标为(1,).故选:B.【点睛】本题考查了旋转的性质,得出矩形ABCD绕点O顺时针旋转了60°是解题的关键.9、B【分析】根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.【详解】解:∵A点坐标为(-2,-2),B点坐标为(4,-2),∴可以建立如下图所示平面直角坐标系,∴点C的坐标为(0,0),故选B.【点睛】本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.10、D【分析】根据位置的确定需要两个条件:方向和距离进行求解即可.【详解】解:A、陇海路以北只有方向,不能确定位置,故不符合题意;B、工人路以西只有方向,不能确定位置,故不符合题意;C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;故选D.【点睛】本题主要考查了确定位置,熟知确定位置的条件是解题的关键.二、填空题1、1【分析】根据两点关于原点对称,横纵坐标分别互为相反数计算即可.【详解】解:∵点与点关于原点对称,∴a=-2,b= 3,∴a+b=-2+3=1,故答案为:1.【点睛】本题考查了坐标系中两点关于原点对称的计算,代数式的值,熟练掌握两点关于原点对称时坐标之间的关系是解题的关键.2、(1,﹣1)【分析】先利用勾股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标.【详解】∵点A的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴B(1,1),连接OB,如图:由勾股定理得:OB=,由旋转的性质得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,发现是8次一循环,则2022÷8=252…6,∴点B2022的坐标为(1,﹣1),故答案为:(1,﹣1).【点睛】本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键.3、5【分析】根据点到x轴的距离等于纵坐标的绝对值解答即可.【详解】解:点P(-2,-5)到x轴的距离是5.故答案为:5.【点睛】本题考查了点到坐标轴的距离,熟记点到x轴的距离等于纵坐标的绝对值是解题的关键.4、【分析】利用原点对称的点的坐标特征可知:M点和N点的横坐标之和与纵坐标之和都为0,得到关于、的二元一次方程组,解方程求出、的值,进而求出.【详解】和点关于原点对称, 解得: , 故答案为:.【点睛】本题主要是考察了关于原点对称的点的特征,熟练掌握关于原点对称的点的横坐标之和与纵坐标之和都为0,是解决此类题的关键.5、9【分析】根据关于原点对称点的坐标特征求出、的值,再代入计算即可.【详解】解:点与点关于原点成中心对称,,,即,,,故答案为:9.【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数.三、解答题1、(1)作图见解析;(2)作图见解析,【分析】(1)分别求出A,B,C关于y轴对称的点,连接即可;(2)根据轴对称的性质计算即可;【详解】(1)由题可知,A,B,C关于y轴对称的点为,,,作图如下;(2)根据题意可得:,设与y轴交于点M,则是等腰直角三角形,∴,∴;【点睛】本题主要考查了轴对称的性质应用和等腰直角三角形的性质,准确作图计算是解题的关键.2、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)①作图见解析,点M的坐标为(1,-5);②MN∥CD.【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)①分别作出A,B的对应点M,N,连接即可;②由平行线的传递性可得答案.【详解】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,点E的坐标为(3,3);(3)①如图所示,线段MN即为所求,点M的坐标为(1,-5);②∵线段MN与线段AB关于原点成中心对称,∴MN∥AB,∵线段CD是由线段AB平移得到的,∴CD∥AB,∴MN∥CD.【点睛】本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题.3、见解析【分析】根据各点的坐标描出各点,然后顺次连接即可【详解】解:如图所示:【点睛】本题考查了坐标与图形,熟练掌握相关知识是解题的关键4、(1)见解析;(2)见解析;(3)【分析】(1)找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;(2)找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)根据A(-4,3),B(-2,4),C(-1,1)经过旋转变换得到的,即横纵坐标的绝对值交换,且在第三象限,都取负号,即可求得,根据中心对称,横纵坐标都取相反数即可求得【详解】(1)如图所示,找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;(2)如图所示,找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)【点睛】本题考查了求关于原点中心对称的点的坐标,绕原点旋转90度的点的坐标,画旋转图形,画中心对称图形,图形与坐标,掌握中心对称与旋转的性质是解题的关键.5、作图见解析,点,点,点【分析】分别作出A,B,C的对应点,,即可.【详解】解: 如图所示.点,点,点.【点睛】本题考查了作图-轴对称变换,直角坐标系中表示点的坐标,熟知关于y轴对称的点的坐标特点是解答此题的关键.6、(1);(2)见解析;(3)12【分析】(1)根据平面直角坐标系写出点的坐标即可;(2)找到点关于轴对称的对应点,顺次连接,则即为所求;(3)根据正方形的面积减去三个三角形的面积即可求得的面积【详解】(1)根据平面直角坐标系可得的坐标为,故答案为:(2)如图所示,找到点关于轴对称的对应点,顺次连接,则即为所求;(3)的面积为故答案为:【点睛】本题考查了坐标与图形,轴对称的性质与作图,掌握轴对称的性质是解题的关键.7、(1)见详解;(2)(1,2);(3)(-a,-b).【分析】(1)分别作出A、B二点关于y轴的对称点A1、B1,再分别作出A1、B1二点关于x轴的对称点A2、B2即可;(2)根据图示得出坐标即可;(3)根据轴对称的性质得出坐标即可.【详解】解:(1)如图所示:线段A1B1和线段A2B2即为所求;(2) 点A2的坐标为(1,2);(3)点M(a,b),关于y轴对称的对称点M1(-a,b),点M1关于x轴对称的对称点M2(-a,-b),故点M2的坐标为(-a,-b).【点睛】本题考查作图-轴对称变换,轴对称-最短问题,两点之间线段最短等知识,解题的关键是熟练掌握轴对称的概念,利用对称解决最短问题,属于中考常考题型.8、(1)或;(2)或;(3)或.【分析】(1)根据“点到轴的距离是1”可得,由此即可求出的值;(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;(3)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案.【详解】解:(1)点到轴的距离是1,且,,即或,解得或;(2)当时,点的坐标为,则点的坐标为,即,当时,点的坐标为,则点的坐标为,即,综上,点的坐标为或;(3)点位于第三象限,,解得,点的横、纵坐标都是整数,或,当时,,则点的坐标为,当时,,则点的坐标为,综上,点的坐标为或.【点睛】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键.9、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:△A2B2C2,即为所求.【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.10、(1)见解析;(2)见解析;(3)16【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积==16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共34页。试卷主要包含了平面直角坐标系中,点P,若点P,已知A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题,共35页。试卷主要包含了若点P等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试达标测试,共27页。试卷主要包含了在平面直角坐标系中,点P,已知点在一,点M,已知点A等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)