年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪教版七年级数学第二学期第十五章平面直角坐标系难点解析试题(含详细解析)

    立即下载
    加入资料篮
    精品试题沪教版七年级数学第二学期第十五章平面直角坐标系难点解析试题(含详细解析)第1页
    精品试题沪教版七年级数学第二学期第十五章平面直角坐标系难点解析试题(含详细解析)第2页
    精品试题沪教版七年级数学第二学期第十五章平面直角坐标系难点解析试题(含详细解析)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂达标检测题

    展开

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂达标检测题,共32页。试卷主要包含了点P在第二象限内,P点到x,在平面直角坐标系中,点等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系难点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知点A(x+2,x﹣3)在y轴上,则x的值为(  )
    A.﹣2 B.3 C.0 D.﹣3
    2、小明在介绍郑州外国语中学位置时,相对准确的表述为( )
    A.陇海路以北 B.工人路以西
    C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角
    3、平面直角坐标系内一点P(﹣3,2)关于原点对称的点的坐标是(  )
    A.(2,﹣3) B.(3,﹣2) C.(﹣2,﹣3) D.(2,3)
    4、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为(  )
    A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)
    5、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为(  )

    A.-1008 B.-1010 C.1012 D.-1012
    6、在平面直角坐标系中,点,关于轴对称点的坐标是( )
    A. B. C. D.
    7、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D绕着点A旋转90°得到点D的坐标为( )

    A.(﹣2,1)或(2,﹣1) B.(﹣2,5)或(2,3)
    C.(2,5)或(﹣2,3) D.(2,5)或(﹣2,5)
    8、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )
    A.( - 1, - 3) B.( - 1,3) C.(1, - 3) D.(3,1)
    9、如图,的顶点坐标为,,,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( ).

    A. B. C. D.
    10、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为( )
    A.2 B.﹣2 C.3 D.﹣3
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是________.
    2、在平面直角坐标系中,已知点与点关于原点对称,则________,________.
    3、如图,平面直角坐标系中,是边长为2的等边三角形,作与关于点成中心对称,再作与于点成中心对称,如此作下去,则的顶点的坐标是________.

    4、已知点与关于原点对称,则xy的值是______.
    5、在平面直角坐标系中,点P(﹣2,﹣5)关于原点对称的点的坐标是 ___________________.
    三、解答题(10小题,每小题5分,共计50分)
    1、已知:如图,在平面直角坐标系中.
    (1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1(   ),B1(   ),C1(   );
    (2)直接写出△ABC的面积为   ;
    (3)在x轴上画点P,使PA+PC最小.

    2、如图,在平面直角坐标系xOy中,A(1,﹣2).
    (1)作△ABC关于y轴的对称图形△A′B′C′;
    (2)写出B′和C′的坐标;
    (3)求△ABC的面积.

    3、如图,三角形的项点坐标分别为,,.

    (1)画出三角形关于点的中心对称的,并写出点的坐标;
    (2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标.
    4、如图,在平面直角坐标系中,AO=CO=6,AC交y轴于点B,∠BAO=30°,CO的垂直平分线过点B交x轴于点E.
    (1)求AE的长;
    (2)动点N从E出发,以1个单位/秒的速度沿射线EC方向运动,过N作x轴的平行线交直线OC于G,交直线BE于P,设GP的长为d,运动时间为t秒,请用含量t的式子表示d,并直接写出t的取值范围;
    (3)在(2)的条件下,动点M从A以1个单位/秒的速度沿射线AE运动,且点M与点N同时出发,MN与射线OC相交于点K,是否存在某一运动时间t,使得=2,若存在,请求出t值;若不存在,请说明理由.

    5、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).
    (1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;
    (2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;
    (3)连接CE,CF,请直接写出△CEF的面积.

    6、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
    已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).

    (1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
    (2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
    (3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
    7、已知点A(a+2b,1),B(﹣2,2a﹣b),若点A,B关于y轴对称,求a+b的值.
    8、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).
    (1)画出△ABC关于y轴对称的图形△A1B1C1;
    (2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后D的对应点D1的坐标;
    (3)请计算出的面积.

    9、如图是某地火车站及周围的简单平面图.(图中每个小正方形的边长代表1千米)

    (1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;
    (2)在(1)中所建的坐标平面内,若学校E的位置是(﹣3,﹣3),请在图中标出学校E的位置.
    10、如图所示的方格纸中,每个小方格的边长都是,点,,.
    (1)作关于轴对称的;
    (2)通过作图在轴上找出点,使最小,并直接写出点的坐标.


    -参考答案-
    一、单选题
    1、A
    【分析】
    根据y轴上点的横坐标为0列方程求解即可.
    【详解】
    解:∵点A(x+2,x﹣3)在y轴上,
    ∴x+2=0,
    解得x=-2.
    故选:A.
    【点睛】
    本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
    2、D
    【分析】
    根据位置的确定需要两个条件:方向和距离进行求解即可.
    【详解】
    解:A、陇海路以北只有方向,不能确定位置,故不符合题意;
    B、工人路以西只有方向,不能确定位置,故不符合题意;
    C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;
    D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;
    故选D.
    【点睛】
    本题主要考查了确定位置,熟知确定位置的条件是解题的关键.
    3、B
    【分析】
    根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(﹣x,﹣y),进而得出答案.
    【详解】
    解答:解:点P(﹣3,2)关于原点对称的点的坐标是:(3,﹣2).
    故选:B.
    【点睛】
    此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.
    4、C
    【分析】
    点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.
    【详解】
    ∵P点到x、y轴的距离分别是4、3,
    ∴点P的纵坐标绝对值为4、横坐标的绝对值为3,
    ∵点P在第二象限内,
    ∴点P的坐标为(-3,4),
    故选:C.
    【点睛】
    本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.
    5、C
    【分析】
    首先确定角码的变化规律,利用规律确定答案即可.
    【详解】
    解:∵各三角形都是等腰直角三角形,
    ∴直角顶点的纵坐标的长度为斜边的一半,
    A3(0,0),A7(2,0),A11(4,0)…,
    ∵2021÷4=505余1,
    ∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
    ∴A2021的坐标为(1012,0).
    故选:C
    【点睛】
    本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
    6、A
    【分析】
    平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.
    【详解】
    解:点A(3,-4)关于x轴的对称点的坐标是(3,4),
    故选:A.
    【点睛】
    本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.
    7、C
    【分析】
    分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解.
    【详解】
    解:设点D绕着点A逆时针旋转90°得到点D1,
    分别过点D,D1作轴的垂线,分别交轴于点C、E,如图:

    根据旋转的性质得∠DAD1=90°,AD1=AD,
    ∴∠AED1=∠ACD=90°,
    ∴∠D1+∠EAD1=90°,∠EAD1 +∠DAC=90°,
    ∴∠D1=∠DAC,
    ∴△AD1E≌△DAC,
    ∴CD=AE,ED1=AC,
    ∵A(0,4),B(2,0),点D为AB的中点,
    ∴点D的坐标为(1,2),
    ∴CD=AE=1,ED1=AC=AO-OC=2,
    ∴点D1的坐标为(2,5);
    设点D绕着点A顺时针旋转90°得到点D2,
    同理,点D2的坐标为(-2,3),
    综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),
    故选:C.
    【点睛】
    本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键.
    8、A
    【分析】
    由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可.
    【详解】
    解:∵两个点关于原点对称时,它们的坐标符号相反,
    ∴点关于原点对称的点的坐标是.
    故选:A.
    【点睛】
    题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律.
    9、A
    【分析】
    画出旋转平移后的图形即可解决问题.
    【详解】
    解:旋转,平移后的图形如图所示,,

    故选:A
    【点睛】
    本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.
    10、C
    【分析】
    根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.
    【详解】
    解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,
    ∴a=3,
    故选:C.
    【点睛】
    此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.
    二、填空题
    1、(-2,4)
    【分析】
    根据点(x,y)关于y轴对称的点的坐标为(-x, y)进行解答即可.
    【详解】
    解:点A(2,4)关于y轴对称的点B的坐标是(-2,4),
    故答案为:(-2,4).
    【点睛】
    本题考查关于y轴对称的点的坐标,熟知关于y轴对称的点的坐标变换规律是解答的关键.
    2、2 2
    【分析】
    关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案.
    【详解】
    解:∵点和点关于原点对称,
    ∴,
    ∴,
    故答案为:2;2.
    【点睛】
    本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键.
    3、
    【分析】
    首先根据△是边长为2的等边三角形,可得的坐标为,的坐标为;然后根据中心对称的性质,分别求出点、、的坐标各是多少;最后总结出的坐标的规律,求出的坐标是多少即可.
    【详解】
    解:△是边长为2的等边三角形,
    的坐标为:,的坐标为:,
    △与△关于点成中心对称,
    点与点关于点成中心对称,
    ,,
    点的坐标是:,
    △与△关于点成中心对称,
    点与点关于点成中心对称,
    ,,
    点的坐标是:,
    △与△关于点成中心对称,
    点与点关于点成中心对称,
    ,,
    点的坐标是:,

    ,,,,,
    的横坐标是:,的横坐标是:,
    当为奇数时,的纵坐标是:,当为偶数时,的纵坐标是:,
    顶点的纵坐标是:,
    △是正整数)的顶点的坐标是:,
    △的顶点的横坐标是:,纵坐标是:,
    故答案为:.
    【点睛】
    此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出的横坐标和纵坐标是解题的关键.
    4、
    【分析】
    直接利用关于原点对称点的性质得出x,y的值进而得出答案.
    【详解】
    解:∵点与关于原点对称,

    解得:,
    则xy的值是:-3.
    故答案为:-3.
    【点睛】
    此题主要考查了关于原点对称点的性质,正确得出的值是解题关键.
    5、(2,5)
    【分析】
    根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数即可求解.
    【详解】
    解:点P(﹣2,﹣5)关于原点对称的点的坐标是(2,5)
    故答案为:(2,5)
    【点睛】
    本题考查了关于原点对称的两个点的坐标特征,掌握“关于原点对称的点的横坐标、纵坐标分别互为相反数”是解题的关键.
    三、解答题
    1、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析
    【分析】
    (1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
    (2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;
    (3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.
    【详解】
    解:(1)如图所示:△A1B1C1即为所求,
    A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);
    故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);
    (2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;
    故答案为:5;
    (3)如图所示:点P即为所求.

    【点睛】
    本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.
    2、(1)见解析;(2)B′(﹣5,6),C′(-7,2);(3)16
    【分析】
    (1)利用轴对称的性质分别作出A,B,C的对应点A′,B′,C′即可;
    (2)根据点的位置写出坐标即可;
    (3)把三角形面积看成长方形面积减去周围三个三角形面积即可.
    【详解】
    解:(1)如图,△A′B′C′即为所求;

    (2)B′(﹣5,6),C′(-7,2);
    (3)S△ABC=8×6﹣×8×4﹣×2×4﹣×6×4=16.
    【点睛】
    本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.
    3、(1)图见解析,;(2)图见解析,
    【分析】
    (1)写出,,关于原点对称的点,,,连接即可;
    (2)连接OC,OB,根据旋转的90°可得,,,,,即可;
    【详解】
    (1),,关于原点对称的点,,,作图如下;
    (2)连接OC,OB,根据旋转的90°可得,,,,,,其中点C2的坐标是(3,-1),作图如下:

    【点睛】
    本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键.
    4、(1)12;(2);(3)当或时,使得.
    【分析】
    (1)由OA=OC=6,∠BAO=30°,得到∠OAC=∠OCA=30°,则∠COE=∠OAC+∠OCA=60°,再由BE是线段OC的垂直平分线平分线,得到OE=CE,则△COE是等边三角形,由此即可得到答案;
    (2)分三种情况:当直线PN在H点下方时(包括H点),当直线PN在H点上方,且在C点下方时(包括C点),当直线PN在C点上方时,三种情况讨论求解即可;
    (3)分N在EC上和EC的延长线上两种情况,构造全等三角形求解即可.
    【详解】
    解:(1)∵OA=OC=6,∠BAO=30°,
    ∴∠OAC=∠OCA=30°,
    ∴∠COE=∠OAC+∠OCA=60°,
    ∵BE是线段OC的垂直平分线平分线,
    ∴OE=CE,
    ∴△COE是等边三角形,
    ∴OE=OC=AO=6,
    ∴AE=AO+OE=12;
    (2)如图1所示,过点C作CK⊥x轴于K,设OC与BE的交点为H,当直线PN在H点下方时(包括H点),
    ∵BE是线段OC的垂直平分线,
    ∴∠CEP=∠OEP,
    ∵PN∥OE,
    ∴∠NPE=∠OEP,∠CGN=∠COE=60°,∠CNG=∠CEO=60°,
    ∴∠NPE=∠NEP,△CGN是等边三角形,
    ∴NP=NE=t,NG=CN=CE-NE=6-t,
    ∴PG=d=NG-NP=6-t-t=6-2t,
    ∵当直线PN刚好经过H点时,此时CH=CN=3,
    即当t=3时,直线PN经过H点,
    ∴当直线PN在H点下方或经过H点时,d=6-2t(0≤t≤3);

    如图2所示,当直线PN在H点上方,且在C点下方时(包括C点),
    同理可证NP=NE=t,NG=CN=CE-CN=6-t,
    ∴PG=d=NP-NG=t-(6-t)=2t-6(3<t≤6);

    如图3所示,当直线PN在C点上方时

    同理可证NP=NE=t,NG=CN=EN-CE=t-6,
    ∴PG=d=NP+NG=t+t-6=2t-6(t>6),
    ∴综上所述, ;
    (3)如图3-1所示,当N在CE上时,过点N作NR∥x轴交OC于R,
    同(2)可证△CRN是等边三角形,
    ∴RN=CN=CR,
    ∵M、N运动的速度相同,
    ∴AM=NE,
    又∵AO=EC,
    ∴MO=NR,
    ∵NR∥MO,
    ∴∠RNK=∠OMK,∠NRK=∠MOK,
    ∴△MOK≌△NRK(ASA),
    ∴OK=RK,OM=RN,
    ∵,
    ∴,
    ∵,
    ∴,即,
    解得;

    如图3-2所示,当C在EC的延长线上时,
    同理可证,,
    ∵,
    解得,
    ∴综上所述,当或时,使得.

    【点睛】
    本题主要考查了等边三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,坐标与图形,三角形外角的性质,全等三角形的性质与判定,解题的关键在于能够利用数形结合的思想进行求解.
    5、(1)作图见详解;(2)作图见详解;(3)的面积为2.
    【分析】
    (1)直接在坐标系中描点,然后依次连线即可;
    (2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;
    (3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.
    【详解】
    解:(1)如图所示,即为所求;

    (2)A、B、C三点关于x轴对称的点的坐标分别为:,,,
    然后描点、连线,
    ∴即为所求;
    (3)由图可得:SΔCEF=12×2×2=2,
    ∴的面积为2.
    【点睛】
    题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.
    6、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
    【分析】
    (1)根据一次反射点和二次反射点的定义求解即可;
    (2)根据二次反射点的意义求解即可;
    (3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
    【详解】
    解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
    点A关于直线:x=2的二次反射点为(5,1)
    故答案为: (-1,1);(5,1).
    (2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,

    解得,
    故答案为: -2.
    (3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
    当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
    ∵当与点B重合时,=-2,
    ∴当<-2时,△与△BCD无公共点.
    当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
    ∵当与点D重合时,=1,
    ∴当>1时,△与△BCD无公共点.
    综上,若△与△BCD无公共点,的取值范围是<-2,或>1.

    【点睛】
    本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
    7、
    【分析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求出a、b的值,然后相加计算即可得解.
    【详解】
    解:∵点A(a+2b,1),B(﹣2,2a﹣b)关于y轴对称,
    ∴,
    解得,
    ∴a+b=.
    【点睛】
    本题考查了关于y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    8、(1)见解析;(2)(-a,b);(3)2
    【分析】
    (1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可得;
    (2)根据(1)中规律即可得出答案;
    (3)用割补法可求△ABC的面积.
    【详解】
    解:(1)△A1B1C1如图所示:

    (2)∵D点的坐标为(a,b),
    ∴D1点的坐标为(-a,b);
    (3).
    【点睛】
    本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会有分割法求三角形面积.关于y轴对称点的性质:纵坐标相同,横坐标互为相反数.
    9、(1)见解析,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3);(2)见解析
    【分析】
    (1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标.
    (2)根据点的坐标的意义描出点E.
    【详解】
    解:(1)平面直角坐标系如图所示,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3).
    (2)如图,点E即为所求.

    【点睛】
    本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.
    10、(1)见解析;(2)见解析,点P的坐标为(−3,0)
    【分析】
    (1)先分别作出点A、B、C关于y轴的对称点,然后再顺次连接可得;
    (2)作点A关于x轴的对称点A″,再连接A″C交x轴于点P,再确定点P的坐标即可.
    【详解】
    解:(1)如图所示:即为所求.

    (2)作点A关于x轴的对称点A′′,连结A′′C,交x轴于点P,点P即为所求,点P的坐标为(−3,0)

    【点睛】
    本题主要考查作图﹣轴对称变换,熟练掌握轴对称变换的定义和性质及最短路径问题是解答本题的关键.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共32页。试卷主要包含了平面直角坐标系中,将点A,若平面直角坐标系中的两点A,若点在第三象限,则点在.等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试习题,共28页。试卷主要包含了点在,平面直角坐标系中,点P,若点在第三象限,则点在.等内容,欢迎下载使用。

    七年级下册第十五章 平面直角坐标系综合与测试练习:

    这是一份七年级下册第十五章 平面直角坐标系综合与测试练习,共31页。试卷主要包含了若点P,点A个单位长度.等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map