北京课改版八年级下册第十五章 四边形综合与测试一课一练
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试一课一练,共31页。试卷主要包含了如图,M等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为( )
A.16 B.24 C.32 D.40
2、下列图形中,是中心对称图形的是( )
A. B.
C. D.
3、下列图形既是中心对称图形,又是轴对称图形的是( )
A. B.
C. D.
4、下列图中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
5、下列图标中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
6、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )
A.120° B.118° C.110° D.108°
7、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若=10°,则∠EAF的度数为( )
A.40° B.45° C.50° D.55°
8、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是( )
A.75° B.60° C.55° D.40°
9、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是( )
A.菱形 B.矩形 C.正方形 D.三角形
10、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若点关于原点的对称点是,则______.
2、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.
3、若点A(m,5)与点B(-4,n)关于原点成中心对称,则m+n=________.
4、如图,△ABC中,D、E分别是AB、AC的中点,若DE=4cm,则BC=_____cm.
5、若一个n边形的每个内角都等于135°,则该n边形的边数是____________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在△ABC中,,,延长CB,并将射线CB绕点C逆时针旋转90°得到射线l,D为射线l上一动点,点E在线段CB的延长线上,且,连接DE,过点A作于M.
(1)依题意补全图1,并用等式表示线段DM与ME之间的数量关系,并证明;
(2)取BE的中点N,连接AN,添加一个条件:CD的长为_______,使得成立,并证明.
2、如图1,在平面直角坐标系中,且;
(1)试说明是等腰三角形;
(2)已知.写出各点的坐标:A( , ),B( , ),C( , ).
(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.
①若的一条边与BC平行,求此时点M的坐标;
②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.
3、如图1,矩形ABCD中,AB=9,AD=12,点G在CD上,且DG=5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒.
(1)△APG的面积为y,求y关于x的函数关系式,并求y=34时x的值;
(2)在点P从B向C运动的过程中,是否存在使AP⊥GP的时刻?若存在,求出x的值,若不存在,请说明理由;
(3)如图2,M,N分别是AP、PG的中点,在点P从B向C运动的过程中,线段MN所扫过的图形是什么形状 ,并直接写出它的面积 .
4、如图,□ABCD中,点E、F分别在AB、CD上,且BE=DF.求证:AF=EC.
5、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=20.点P从点B出发,以每秒2个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以每秒4个单位的速度沿AB向终点B运动,过点P作PQ⊥AB于点Q,连结PQ,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与Rt△ABC重叠部分图形的面积为S(S>0),点P的运动时间为t秒.
(1)①BC的长为 ;
②用含t的代数式表示线段PQ的长为 ;
(2)当QM的长度为10时,求t的值;
(3)求S与t的函数关系式;
(4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.
-参考答案-
一、单选题
1、C
【分析】
由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=BC,根据平行线的性质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.
【详解】
∵D,E分别是AB,AC的中点,
∴AE=CE,AD=BD,DE为△ABC的中位线,
∴DE//BC,DE=BC,
∵∠ABC=90°,
∴∠ADE=∠ABC=90°,
在△MBD和△EDA中,,
∴△MBD≌△EDA,
∴MD=AE,DE=MB,
∵DE//MB,
∴四边形DMBE是平行四边形,
∴MD=BE,
∵AC=18,BC=14,
∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.
故选:C.
【点睛】
本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.
2、D
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
【详解】
A、不是中心对称图形,故此选项不合题意;
B、不是中心对称图形,故此选项不合题意;
C、不是中心对称图形,故此选项不合题意;
D、是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键.
3、D
【分析】
一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.
【详解】
A、既不是中心对称图形,也不是轴对称图形,故不符合题意;
B、是轴对称图形,但不是中心对称图形,故不符合题意;
C、是中心对称图形,但不是轴对称图形,故不符合题意;
D、既是中心对称图形,也是轴对称图形,故符合题意.
【点睛】
本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.
4、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,也不是中心对称图形.故本选项不合题意;
B、是轴对称图形,不是中心对称图形.故本选项不合题意;
C、不是轴对称图形,是中心对称图形.故本选项不合题意;
D、既是轴对称图形又是中心对称图形.故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、B
【分析】
由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
6、D
【分析】
由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.
【详解】
解:∵五边形ABCDE为正五边形,
∴AB=BC,∠ABM=∠C,
在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC=
∴∠APN的度数为108°;
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.
7、A
【分析】
可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.
【详解】
解:设∠EAD′=α,∠FAB′=β,
根据折叠性质可知:
∠DAF=∠D′AF,∠BAE=∠B′AE,
∵∠B′AD′=10°,
∴∠DAF=10°+β,
∠BAE=10°+α,
∵四边形ABCD是矩形
∴∠DAB=90°,
∴10°+β+β+10°+10°+α+α=90°,
∴α+β=30°,
∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,
=10°+α+β,
=10°+30°,
=40°.
则∠EAF的度数为40°.
故选:A.
【点睛】
本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.
8、C
【分析】
证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.
【详解】
解:∵点E,F分别是AB,AC的中点,
∴EF是△ABC的中位线,
∴EF∥BC,
∴∠AEF=∠B=55°,
故选:C.
【点睛】
本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.
9、B
【分析】
先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.
【详解】
解:如图,∵、、、分别是、、、的中点,
∴,,,
∴四边形是平行四边形,
∵,
∴,
∴平行四边形是矩形,
又与不一定相等,
与不一定相等,
矩形不一定是正方形,
故选:B.
【点睛】
本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.
10、B
【分析】
先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,且AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,
∴BD⊥AE,
∴□DBCE为矩形,故本选项不符合题意;
B、∵DE⊥DC,
∴∠EDB=90°+∠CDB>90°,
∴四边形DBCE不能为矩形,故本选项符合题意;
C、∵∠ADB=90°,
∴∠EDB=90°,
∴□DBCE为矩形,故本选项不符合题意;
D、∵CE⊥DE,
∴∠CED=90°,
∴□DBCE为矩形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
二、填空题
1、
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:由关于坐标原点的对称点为,得,
,
解得:
故答案为:.
【点睛】
本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
2、或
【分析】
分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可
【详解】
如图:当将纸片沿纵向对折
根据题意可得:
为的三等分点
在中有
如图:当将纸片沿横向对折
根据题意得:,
在中有
为的三等分点
故答案为:或
【点睛】
本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.
3、
【分析】
根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可.
【详解】
解:∵点A(m,5)与点B(-4,n)关于原点成中心对称,
∴m=4,n=-5,
∴m+n=-5+4=-1,
故答案为:-1.
【点睛】
本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键.
4、8
【分析】
运用三角形的中位线的知识解答即可.
【详解】
解:∵△ABC中,D、E分别是AB、AC的中点
∴DE是△ABC的中位线,
∴BC=2DE=8cm.
故答案是8.
【点睛】
本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键.
5、8
【分析】
根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数
【详解】
解:∵一个n边形的每个内角都等于135°,
∴则这个n边形的每个外角等于
该n边形的边数是
故答案为:
【点睛】
本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.
三、解答题
1、(1)DM=ME,见解析;(2),见解析
【分析】
(1)补全图形,连接AE、AD,通过∠ABE=∠ACD,AB=AC,BE=CD,证明 △ABE ≌ △ACD,得AE=AD,再利用AM⊥DE于M,即可得到DM=EM.
(2)连接AD,AE,BM ,可求出,当时,可得,由(1)得DM=EM,可知BM是△CDE的中位线从而得到,BM∥CD,得到∠ABM=135°=∠ABE.因为N为BE中点,可知从而证明△ABN ≌ △ABM得到AN=AM,由(1),△ABE ≌ △ACD,可证明∠EAB=∠DAC,AD=AE进而得到∠EAD=90°,又因为DM=EM,即可得到.
【详解】
(1)补全图形如下图,
DM与ME之间的数量关系为DM=ME.
证明:连接AE,AD,
∵ ∠BAC=90°,AB=AC,
∴ ∠ABC=∠ACB=45°.
∴ ∠ABE=180°-∠ABC=135°.
∵ 由旋转,∠BCD=90°,
∴ ∠ACD=∠ACB+∠BCD=135°.
∴ ∠ABE=∠ACD.
∵ AB=AC,BE=CD,
∴ △ABE ≌ △ACD.
∴ AE=AD.
∵ AM⊥DE于M,
∴ DM=EM.
(2)
证明:连接AD,AE,BM.
∵ AB=AC=1,∠BAC=90°,
∴ .
∵ ,
∴ .
∵ 由(1)得DM=EM,
∴ BM是△CDE的中位线.
∴ ,BM∥CD.
∴ ∠EBM=∠ECD=90°.
∵ ∠ABE=135°,
∴ ∠ABM=135°=∠ABE.
∵ N为BE中点,
∴ .
∴ BM=BN.
∵ AB=AB,
∴ △ABN ≌ △ABM.
∴ AN=AM.
∵ 由(1),△ABE ≌ △ACD,
∴ ∠EAB=∠DAC,AD=AE.
∵ ∠BAC=∠DAC+∠DAB=90°,
∴ ∠EAD=90°.
∵ DM=EM,
∴ .
∴ .
【点睛】
本题考查了旋转的性质和三角形全等的判定及性质,熟练掌握三角形全等的判定及性质是解题的关键.
2、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【分析】
(1)设,,,则,由勾股定理求出,即可得出结论;
(2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;
(3)①分当时,;当时,;得出方程,解方程即可;
②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.
【详解】
解:(1)证明:设,,,则,
在中,,
,
∴是等腰三角形;
(2)∵,,
∴,
∴,,,.
∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),
故答案为:12,0;-8,0;0,16;
(3)①如图3-1所示,
当MN∥BC时,
∵AB=AC,
∴∠ABC=∠ACB,
∵MN∥BC,
∴∠AMN=∠ABC,∠ANM=∠ACB,
∴∠AMN=∠ANM,
∴AM=AN,
∴AM=BM,
∴M为AB的中点,
∵,
∴,
∴,
∴点M的坐标为(2,0);
如图3-2所示,当ON∥BC时,
同理可得,
∴,
∴M点的坐标为(4,0);
∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;
②如图3-3所示,当OM=OE时,
∵E是AC的中点,∠AOC=90°,,
∴,
∴此时M的坐标为(0,10);
如图3-4所示,当时,
∴此时M点与A点重合,
∴M点的坐标为(12,0);
如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,
∵OE=AE,EF⊥OA,
∴,
∴,
设,则,
∵,
∴,
解得,
∴M点的坐标为(,0);
综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【点睛】
本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.
3、(1)y=-2.5x+54,x=8;(2)存在,x=6;(3)平行四边形;15.
【分析】
(1)PB=x,PC=12-x,然后依据△APG的面积=矩形的面积-三个直角三角形的面积可得到y与x的函数关系式,然后将y=34代入函数关系式可求得x的值;
(2)先依据勾股定理求得PA、PG、AG的长,然后依据勾股定理的逆定理列出关于x的方程,从而可求得x的值;
(3)确定出点P分别与点B和点C重合时,点M、N的位置,然后依据三角形的中位线定理可证明M1M2∥N1N2,N1N2=M1M2,从而可判断出MN扫过区域的形状,然后依据平行四边形的面积公式求解即可.
【详解】
解:(1)∵四边形ABCD为矩形,
∴DC=AB=9,AD=BC=12.
∵DG=5,
∴GC=4.
∵PB=x,PC=12-x,
∴y=9×12-×9×x-×4×(12-x)-×5×12,整理得:y=-2.5x+54.
当y=34时,-2.5x+54=34,解得x=8;
(2)存在.
∵PB=x,PC=12-x,AD=12,DG=5,
∴PA2=AB2+BP2=81+x2,PG2=PC2+GC2=(12-x)2+16,AG2=AD2+DG2=169.
∵当AG2=AP2+PG2时,AP⊥PG,
∴81+x2+(12-x)2+16=169,整理得:x2-12x+36=0,配方得:(x-6)2=0,
解得:x=6;
(3)如图所示:
∵当点P与点B重合时,点M位于M1处,点N位于点N1处,
∴M1为AB的中点,点N1位GB的中点.
∵当点P与点C重合时,点M位于M2处,点N位于点N2处,
∴M2为AC的中点,点N2位CG的中点.
∴M1M2∥BC,M1M2=BC,N1N2∥BC,N1N2=BC.
∴M1M2∥N1N2,N1N2=M1M2.
∴四边形M1M2N2N1为平行四边形.
∴MN扫过的区域为平行四边形.
S=BC•(AB-CG)=6×2.5=15,
故答案为:平行四边形;15.
【点睛】
本题主要考查了列函数关系式、三角形的面积公式、三角形的中位线定理、平行四边形的判定和性质、勾股定理的应用,画出MN扫过的图形是解题的关键.
4、证明见解析
【分析】
先证明再证明可得四边形是平行四边形,于是可得结论.
【详解】
解: □ABCD,
BE=DF,
∴AE=CF,AE//CF
四边形是平行四边形,
【点睛】
本题考查的是平行四边形的判定与性质,掌握“一组对边平行且相等的四边形是平行四边形”是解本题的关键.
5、(1)①;②;(2)t的值为或;(3)S=-t2+20t或S=;(4)t=2s或s.
【分析】
(1)①由勾股定理可求解;
②由直角三角形的性质可求解;
(2)分两种情况讨论,由QM的长度为10,列出方程可求解;
(3)分两种情况讨论,由面积公式可求解;
(4)分两种情况讨论,由含30°角的直角三角形三边的比值可求解.
【详解】
解:(1)①∵∠ACB=90°,∠B=30°,AB=20,
∴AC==10,
∴BC=;
②∵PQ⊥AB,
∴∠BQP=90°,
∵∠B=30°,
∴PQ=,
由题意得:BP=2t,
∴PQ=t,
故答案为:t;
(2)在Rt△PQB中,
BQ==3t,
当点M与点Q相遇,20=AM+BQ=4t+3t,
∴t=,
当0<t<时,MQ=AB-AM-BQ,
∴20-4t-3t=10,
∴t=,
当<t≤=5时,MQ=AM+BQ-AB,
∴4t+3t-20=10,
∴t=,
综上所述:当QM的长度为10时,t的值为或;
(3)当0<t<时,S=PQ·MQ=t×(20-7t)=-t2+20t;
当<t≤5时,如图,
∵四边形PQMN是矩形,
∴PN=QM=7t-20,PQ=t,
∴∠B=30°,
∴ME∶BE∶BM=1∶2∶,
∵BM=20-4t,
∴ME=,
∴S==;
(4)如图,若NQ⊥AC,
∴NQ∥BC,
∴∠B=∠MQN=30°,
∵MN∶NQ∶MQ=1∶2∶,
∵MQ=20-7t,MN=PQ=,
∴,
∴t=2,
如图,若NQ⊥BC,
∴NQ∥AC,
∴∠A=∠BQN=90°-∠B=60°,
∴∠PQN=90°-∠BQN=30°,
∴PN∶NQ∶PQ=1∶2∶,
∵PN=MQ=7t-20,PQ=,
∴,
∴t=,
综上所述:当t=2s或s时,过点Q和点N的直线垂直于Rt△ABC的一边.
【点睛】
本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试复习练习题,共23页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练,共33页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试课时作业,共25页。试卷主要包含了下列图形中不是中心对称图形的是,下列∠A等内容,欢迎下载使用。