年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析京改版八年级数学下册第十五章四边形专项测评试题(无超纲)

    2022年最新精品解析京改版八年级数学下册第十五章四边形专项测评试题(无超纲)第1页
    2022年最新精品解析京改版八年级数学下册第十五章四边形专项测评试题(无超纲)第2页
    2022年最新精品解析京改版八年级数学下册第十五章四边形专项测评试题(无超纲)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试课后练习题

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课后练习题,共25页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、四边形的内角和与外角和的数量关系,正确的是(  )A.内角和比外角和大180° B.外角和比内角和大180°C.内角和比外角和大360° D.内角和与外角和相等2、下列图案中,是中心对称图形,但不是轴对称图形的是(   A. B.C. D.3、下列图形中,既是轴对称图形又是中心对称图形的是(    ).A. B.C. D.4、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为(    A.46.5cm B.22.5cm C.23.25cm D.以上都不对5、如图菱形ABCD,对角线ACBD相交于点O,若BD=8,AC=6,则AB的长是(    A.5 B.6 C.8 D.106、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是(  )A. B. C. D.7、下列图案中,是中心对称图形的是(    A. B. C. D.8、在平行四边形ABCD中,∠A=30°,那么∠B∠A的度数之比为(     A.4:1 B.5:1 C.6:1 D.7:19、已知,四边形ABCD的对角线ACBD相交于点O.设有以下条件:①ABAD;②ACBD;③AOCOBODO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是(  )A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④10、平面直角坐标系内与点P关于原点对称的点的坐标是(     A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、点P(1,2)关于原点中心对称的点的坐标为_______.2、一个正多边形的内角和为540°,则它的一个外角等于 ______.3、如图,△ABC中,DE分别是ABAC的中点,若DE=4cm,则BC=_____cm.
     4、如图,正方形ABCD中,AD ,已知点E是边AB上的一动点(不与AB重合)将△ADE沿DE对折,点A的对应点为P,当△APB是等腰三角形时,AE=______ .(温馨提示:∵ ,∴ 5、菱形的对角线之比为3:4,且面积为24,则它的对角线分别为________.三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD是平行四边形,,且分别交对角线于点EF,连接EDBF(1)求证:四边形BEDF是平行四边形;(2)若AEEF,请直接写出图2中面积等于四边形ABCD的面积的的所有三角形.2、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.(1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).3、如图,的中位线,延长,使,连接求证:
     4、如图,四边形ABCD是平行四边形,∠BAC=90°.(1)尺规作图:在BC上截取CE,使CECD,连接DEAC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FMCF的数量关系,并证明你的结论.5、△ABC和△GEF都是等边三角形.问题背景:如图1,点E与点C重合且BCG三点共线.此时△BFC可以看作是△AGC经过平移、轴对称或旋转得到.请直接写出得到△BFC的过程.迁移应用:如图2,点EAC边上一点(不与点AC重合),点F为△ABC中线CD上一点,延长GFBC于点H,求证:联系拓展:如图3,AB=12,点DE分别为ABAC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(EFG三点按顺时针排列).当最小时,则△MDG的面积为_______. -参考答案-一、单选题1、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.2、C【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;B.既是轴对称图形,又是中心对称图形,本选项不符合题意;C.是中心对称图形,但不是轴对称图形,本选项符合题意;D.既是轴对称图形,又是中心对称图形,本选项不符合题意;故选:C.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.3、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、C【分析】如图所示,DEDFEF分别是三角形ABC的中位线,GHGIHI分别是△DEF的中位线,则,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.【详解】解:如图所示,DEDFEF分别是三角形ABC的中位线,GHGIHI分别是△DEF的中位线,∴△DEF的周长同理可得:△GHI的周长∴第三次作中位线得到的三角形周长为∴第四次作中位线得到的三角形周长为∴第三次作中位线得到的三角形周长为∴这五个新三角形的周长之和为故选C.【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.5、A【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,OA=OC=3,OB=OD=4,AOBORtAOB中,由勾股定理得:故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.6、B【分析】利用中心对称图形的定义判断即可.【详解】解:根据中心对称图形的定义可知,②满足条件.故选:【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.7、B【分析】由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、B【分析】根据平行四边形的性质先求出∠B的度数,即可得到答案.【详解】解:∵四边形ABCD是平行四边形,ADBC∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故选B.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.9、C【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.【详解】解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.故选:C.【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.10、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题1、(-1,-2)【分析】平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y).据此作答.【详解】解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2).故答案为:(-1,-2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键.2、72°【分析】根据题意求得正多边形的边数,进而求得答案【详解】解:∵一个正多边形的内角和为540°,即故答案为:【点睛】本题考查了正多边形的内角和和外角和公式,根据内角和公式求得边数是解题的关键.3、8【分析】运用三角形的中位线的知识解答即可.【详解】解:∵△ABC中,DE分别是ABAC的中点DE是△ABC的中位线,BC=2DE=8cm故答案是8.【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键.4、2【分析】AP=AB时,结合正方形的性质可得AB=AD=AP,由折叠的性质可得AD=DP,推出△APD为等边三角形,得到∠ADE=30°,然后根据勾股定理进行计算;当AP=PB时,过PPFAB于点F,过PPGAD于点G,则四边形AFPG为矩形,得到PG=AF,由等腰三角形的性质可得AF=AB,结合正方形以及折叠的性质可得PG=AF=PD,则∠GDP=30°,进而求得∠PEF=30°,设PF=x,则PE=AE=2xEF=x,然后根据AE+EF=AF=PD进行计算.【详解】解:当AP=AB时, ∵四边形ABCD为正方形, AB=AD AP=AD ∵ 将△ADE沿DE对折, 得到△PDE AD=DP AP=AD=DP ∴△APD为等边三角形, ∴∠ADP=60°, ∴∠ADE=30°, ∴设,则∴在中,,即 ∴解得: AP=PB时,过PPFAB于点F,过PPGAD于点G ADAB ∴四边形AFPG为矩形, PG=AF AP=PBPFAB AF=AB= AB=AD=DP PG=AF=PD=如图,作DP的中点M,连接GM又∵是等边三角形∴∠GDP=30°. ∵∠DAE=∠DPE=90°,∠ADP=30°, ∴∠AEP=150°, ∴∠PEF=30°. PF=x,则PE=AE=2xEF=x AE+EF=(2+)x=   x=2-3, AE=4-6. 故答案为:2或4-6.【点睛】此题考查了正方形的性质,勾股定理,等腰三角形的性质和判定等知识,解题的关键是熟练掌握正方形的性质,勾股定理,等腰三角形的性质和判定方法.5、6和8【分析】根据比例设两条对角线分别为3x、4x,再根据菱形的面积等于两对角线乘积的一半列式求出x的值即可.【详解】解:设两条对角线分别为3x、4x根据题意得,×3x•4x=24,解得x=2(负值舍去),∴菱形的两对角线的长分别为故答案为:6和8.【点睛】本题考查了菱形的面积,主要利用了菱形的对角线互相垂直平分的性质,菱形的面积的求法,需熟记.三、解答题1、(1)证明见解析;(2)【分析】(1)先证明再证明可得从而有 于是可得结论;(2)先证明再证明,从而可得结论.【详解】证明:(1) 四边形ABCD是平行四边形, 四边形BEDF是平行四边形.(2)由(1)得: 四边形BEDF是平行四边形, 四边形ABCD是平行四边形,【点睛】本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的三角形是解题的关键.2、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案.【详解】解:(1)如图所示:①②③都是轴对称图形;(2)如图所示:④⑤都是中心对称图形.【点睛】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.3、见解析【分析】由已知条件可得DF=ABDFAB,从而可得四边形ABFD为平行四边形,则问题解决.【详解】的中位线DEABAD=DCDFABEF=DEDF=AB∴四边形ABFD为平行四边形AD=BFBF=DC【点睛】本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键.当然本题也可以用三角形全等的知识来解决.4、(1)图形见解析;(2),证明见解析【分析】(1)以C为圆心CD长为半径画弧于BC交点即为E;连DEAC交点即为F;过FAD的垂直平分线与AD交点即为M(2)证明DF平分,再利用角平分线的性质判定即可.【详解】(1)图形如下:(2),证明如下:由(1)可得:,CECD∵四边形ABCD是平行四边形ADBCABCD,DF平分∵∠BAC=90°【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.5、(1)以点C为旋转中心将逆时针旋转就得到;(2)见解析;(3)【分析】(1)只需要利用SAS证明△BCF≌△ACG即可得到答案;(2)法一:以为边作,与的延长线交于点K,如图,先证明,然后证明, 得到,则,过点FFMBCM,求出,即可推出,则,即:法二:过F先证明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性质求出,再证明 得到,则(3)如图3-1所示,连接GMAG,先证明△ADE是等边三角形,得到DE=AE,即可证明得到,即点G的角平分线所在直线上运动.过G,则最小即是最小,故当MGP三点共线时,最小;如图3-2所示,过点GGQABQ,连接DG,求出DMQG的长即可求解.【详解】(1)∵△ABC和△GEF都是等边三角形,BC=ACCF=CG,∠ACB=∠FCG=60°,∴∠ACB+∠ACF=FCG+∠ACF∴∠FCB=∠GCA∴△BCF≌△ACGSAS),∴△BFC可以看作是△AGC绕点C逆时针旋转60度所得;(2)法一:证明:以为边作,与的延长线交于点K,如图,均为等边三角形,,∠GFE=60°,∴∠EFH+∠ACB=180°,是等边的中线,中,过点FFMBCMKM=CM∵∠K=30°,,即:法二证明:过F是等边的中线,∴△FCN≌△FCMAAS),FC=2FNCM=CN同法一,中, (3)如图3-1所示,连接GMAGDE分别是ABAC的中点,DE是△ABC的中位线,CDABDEBC,∠CDA=90°,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等边三角形,∠FDE=30°,DE=AE∵△GEF是等边三角形,EF=EG,∠GEF=60°,∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,即点G的角平分线所在直线上运动.G,则最小即是最小,∴当MGP三点共线时,最小如图3-2所示,过点GGQABQ,连接DGQG=PG∵∠MAP=60°,∠MPA=90°,∴∠AMP=30°,AM=2APDAB的中点,AB=12,AD=BD=6,MBD靠近B点的三等分点,MD=4,AM=10,AP=5,又∵∠PAG=30°,AG=2GP【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,含30度角的直角三角形的性,勾股定理,解题的关键在于能够正确作出辅助线求解. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试复习练习题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试复习练习题,共23页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试一课一练:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试一课一练,共31页。试卷主要包含了如图,M等内容,欢迎下载使用。

    数学八年级下册第十五章 四边形综合与测试练习题:

    这是一份数学八年级下册第十五章 四边形综合与测试练习题,共34页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map