年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析京改版八年级数学下册第十五章四边形专题练习试卷(无超纲)

    2022年最新精品解析京改版八年级数学下册第十五章四边形专题练习试卷(无超纲)第1页
    2022年最新精品解析京改版八年级数学下册第十五章四边形专题练习试卷(无超纲)第2页
    2022年最新精品解析京改版八年级数学下册第十五章四边形专题练习试卷(无超纲)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练,共33页。
    京改版八年级数学下册第十五章四边形专题练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列四个图形中,为中心对称图形的是(  )
    A. B.
    C. D.
    2、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为(  )

    A.180° B.360°
    C.540° D.不能确定
    3、下列说法中正确的是( )
    A.从一个八边形的某个顶点出发共有8条对角线
    B.已知C、D为线段AB上两点,若,则
    C.“道路尽可能修直一点”,这是因为“两点确定一条直线”
    D.用两个钉子把木条固定在墙上,用数学的知识解释是“两点之间线段最短”
    4、下列图形中,既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    5、下列图案中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    6、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )

    A. B. C. D.
    7、下列四个图案中,是中心对称图形的是(  )
    A. B.
    C. D.
    8、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使与全等时,则t的值为( )

    A.2 B.2或1.5 C.2.5 D.2.5或2
    9、如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=16,则AB的长为(  )

    A.16 B.12 C.8 D.4
    10、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是(  )

    A.75° B.60° C.55° D.40°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB上,将△ABC沿DE对折,恰好能使点A和点C重合.若x轴上有一点P,使△AEP为等腰三角形,则点P的坐标为________.

    2、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.

    3、正方形ABCD的边长是8cm,点M在BC边上,且MC=2cm,P是正方形边上的一个动点,连接PB交AM于点N,当PB=AM时,PN的长是_____ .
    4、一个正多边形的内角和为540°,则它的一个外角等于 ______.
    5、已知长方形ABCD中,AB=4,BC=10,M为BC中点,P为AD上的动点,则以B、M、P为顶点组成的等腰三角形的底边长是______________________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,四边形ABCD为平行四边形,∠BAD的平分线AF交CD于点E,交BC的延长线于点F.点E恰是CD的中点.
    求证:(1)△ADE≌△FCE;
    (2)BE⊥AF.

    2、如图,在△ABC中,,,延长CB,并将射线CB绕点C逆时针旋转90°得到射线l,D为射线l上一动点,点E在线段CB的延长线上,且,连接DE,过点A作于M.
    (1)依题意补全图1,并用等式表示线段DM与ME之间的数量关系,并证明;
    (2)取BE的中点N,连接AN,添加一个条件:CD的长为_______,使得成立,并证明.

    3、已知:如图,,,AD是BC上的高线,CE是AB边上的中线,于G.
    (1)若,求线段AC的长;
    (2)求证:.

    4、(阅读材料)
    材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;
    材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC,BD,把正方形分成四个与等腰三角形ADE全等的三角形,所以.

    (解决问题)如图3,图中由三个正方形组成的图形
    (1)请你直接写出图中所有的全等三角形;
    (2)任意选择一组全等三角形进行证明;
    (3)设图中两个小正方形的面积分别为S1和S2,若,求S1和S2的值.

    5、如图,在正方形中,是直线上的一点,连接,过点作,交直线于点,连接.
    (1)当点在线段上时,如图①,求证:;
    (2)当点在直线上移动时,位置如图②、图③所示,线段,与之间又有怎样的数量关系?请直接写出你的猜想,不需证明.


    -参考答案-
    一、单选题
    1、B
    【分析】
    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    【详解】
    解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;
    选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;
    故选:B.
    【点睛】
    此题主要考查了中心对称图形定义,关键是找出对称中心.
    2、B
    【分析】
    设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.
    【详解】
    解:设BE与DF交于点M,BE与AC交于点N,

    ∵ ,
    ∴ ,
    ∵,
    ∴ .
    故选:B
    【点睛】
    本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.
    3、B
    【分析】
    根据n边形的某个顶点出发共有(n-3)条对角线即可判断A;根据线段的和差即可判断B;根据两点之间,线段最短即可判断C;根据两点确定一条直线即可判断D.
    【详解】
    解:A、从一个八边形的某个顶点出发共有5条对角线,说法错误,不符合题意;
    B、已知C、D为线段AB上两点,若AC=BD,则AD=BC,说法正确,符合题意;

    C、“道路尽可能修直一点”,这是因为“两点之间,线段最短”,说法错误,不符合题意;
    D、用两个钉子把木条固定在墙上,用数学的知识解释是“两点确定一条直线”,说法错误,不符合题意;
    故选B.
    【点睛】
    本题主要考查了多边形对角线问题,线段的和差,两点之间,线段最短,两点确定一条直线等等,熟知相关知识是解题的关键.
    4、D
    【详解】
    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;

    B.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    C.是轴对称图形,不是中心对称图形,故本选项符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项不符合题意.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、B
    【详解】
    A.是轴对称图形,不是中心对称图形,故不符合题意;
    B. 既是轴对称图形,又是中心对称图形,故符合题意;
    C.是轴对称图形,不是中心对称图形,故不符合题意;
    D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
    故选B
    【点睛】
    本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    6、C
    【分析】
    过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.
    【详解】

    如图,过点P作交于点M,
    ∵四边形ABCD是菱形,
    ∴,,
    ∵,,
    ∴,,
    ∴,,
    在与中,

    ∴,
    ∴,
    在中,,
    ∴,
    ,即,
    解得:,
    ∴.
    故选:C.
    【点睛】
    此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
    7、A
    【分析】
    中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.
    【详解】
    解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,
    故选:A.
    【点睛】
    本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.
    8、D
    【分析】
    根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.
    【详解】
    解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,
    ∵AB=BC=10厘米,AE=4厘米,
    ∴BE=CP=6厘米,
    ∴BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    当,即点Q的运动速度与点P的运动速度不相等,
    ∴BP≠CQ,
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点P,Q运动的时间t=(秒).
    综上t的值为2.5或2.
    故选:D.
    【点睛】
    本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.
    9、C
    【分析】
    由题意可得AO=BO=CO=DO=8,可证△ABO是等边三角形,可得AB=8.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,
    ∴OA=OB=8,
    ∵∠AOD=120°,
    ∴∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴AB=AO=BO=8,
    故选:C.
    【点睛】
    本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.
    10、C
    【分析】
    证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.
    【详解】
    解:∵点E,F分别是AB,AC的中点,
    ∴EF是△ABC的中位线,
    ∴EF∥BC,
    ∴∠AEF=∠B=55°,
    故选:C.
    【点睛】
    本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.
    二、填空题
    1、(8,0)或(-2,0)-2,0)或(8,0)
    【分析】
    由矩形的性质可得BC=OA =3,AB=OC=9,∠B=90°=∠OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解.
    【详解】
    解:∵四边形OABC矩形,且点A(3,0),点C(0,9),
    ∴BC=OA =3,AB=OC=9,∠B=90°=∠OAE,
    ∵将△ABC沿DE对折,恰好能使点A与点C重合.
    ∴AE=CE,
    ∵CE2=BC2+BE2,
    ∴CE2=9+(9-CE)2,
    ∴CE=5,
    ∴AE=5,
    ∵△AEP为等腰三角形,且∠EAP=90°,
    ∴AE=AP=5,
    ∴点E坐标(8,0)或(-2,0)
    故答案为:(8,0)或(-2,0)
    【点睛】
    本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE的长是本题的关键.
    2、
    【分析】
    连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
    【详解】
    解:如图所示,连接OB,交AC于点D,

    ∵四边形OABC为平行四边形,,
    ∴四边形OABC为菱形,
    ∴,,,
    ∵,
    ∴为等边三角形,
    ∴,
    ∴,
    在中,设,则,
    ∴,
    即,
    解得:或(舍去),
    ∴的长为:,
    故答案为:.
    【点睛】
    题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
    3、5cm或5.2cm
    【分析】
    当点P在BC上,AM>BP,当点P在AB上,AM>BP,当点P在CD上,如图,根据PB=AM,可证Rt△ABM≌Rt△BCP(HL),可证BP⊥AM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点P在AD上,如图,可证Rt△ABM≌Rt△BAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,
    【详解】
    解:当点P在BC上,AM>BP,当点P在AB上,AM>BP,不合题意,舍去;
    当点P在CD上,如图,
    ∵PB=AM
    ∵四边形ABCD为正方形,
    ∴AB=BC=AD=CD=8,
    在Rt△ABM和Rt△BCP中,

    ∴Rt△ABM≌Rt△BCP(HL),
    ∴∠MAB=∠PBC,
    ∵∠MAB+∠AMB=90°,
    ∴∠PBC+∠AMB=90°,
    ∴∠BNM=180°-∠PBC-∠AMB=90°,
    ∴BP⊥AM,
    ∵MC=2cm,
    ∴BM=BC-MC=8-2=6cm,
    ∴AM=,
    ∴,
    ∴,
    ∴PN=BP-BN=AM-BN=10-4.8=5.2cm,


    当点P在AD上,如图,
    在Rt△ABM和Rt△BAP中,

    ∴Rt△ABM≌Rt△BAP(HL),
    ∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,
    ∴AN=BN,
    ∵AD∥BC,
    ∴∠PAN=∠NMB=∠APN,
    ∴AN=PN=BN=MN,
    ∵AM=BP=10cm,
    ∴PN=cm,
    ∴PN的长为5cm或5.2cm.
    故答案为5cm或5.2cm.

    【点睛】
    本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键.
    4、72°
    【分析】
    根据题意求得正多边形的边数,进而求得答案
    【详解】
    解:∵一个正多边形的内角和为540°,即


    故答案为:
    【点睛】
    本题考查了正多边形的内角和和外角和公式,根据内角和公式求得边数是解题的关键.
    5、5或或
    【分析】
    分三种情况:①当BP=PM时,点P在BM的垂直平分线上,取BM的中点N,过点N作NP⊥BM交AD于P,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理即可求解;
    ②当BM=PM=5时,当∠PMB为锐角如图2时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理可得MN=3,从而BN=2,再由勾股定理可得BP的长;
    ③当BM=PM=5时,当∠PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理MN=3,从而BN=8,再由勾股定理可得BP的长;即可求解.
    【详解】
    解:BC=10,M为BC中点,
    ∴BM=5,
    当△BMP为等腰三角形时,分三种情况:
    ①当BP=PM时,点P在AM的垂直平分线上,
    取BM的中点N,过点N作NP⊥AD交AD于P,如图1所示:

    则△PBM是等腰三角形
    ∴底边BM的长为5
    ②当BM=PM=5时,当∠PMB为锐角如图2时,则四边形ABNP是矩形,

    ∴PN=AB=4,
    ∴MN=

    在Rt△PBN中,
    ③当BM=PM=5时,当∠PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,

    同理可得

    在Rt△PBN中,
    综上,以B、M、P为顶点组成的等腰三角形的底边长是:5 或或
    故答案为:5 或或.
    【点睛】
    本题考查了矩形的性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键.
    三、解答题
    1、(1)见解析;(2)见解析.
    【分析】
    (1)由平行四边形的性质得出AD∥BC,得出∠D=∠ECF,则可证明△ADE≌△FCE(ASA);
    (2)由平行四边形的性质证出AB=BF,由全等三角形的性质得出AE=FE,由等腰三角形的性质可得出结论.
    【详解】
    证明:(1)∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠D=∠ECF,
    ∵E为CD的中点,
    ∴ED=EC,
    在△ADE和△FCE中,

    ∴△ADE≌△FCE(ASA);
    (2)∵四边形ABCD为平行四边形,
    ∴AB=CD,AD∥BC,
    ∴∠FAD=∠AFB,
    又∵AF平分∠BAD,
    ∴∠FAD=∠FAB.
    ∴∠AFB=∠FAB.
    ∴AB=BF,
    ∵△ADE≌△FCE,
    ∴AE=FE,
    ∴BE⊥AF.
    【点睛】
    本题主要考查了平行四边形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    2、(1)DM=ME,见解析;(2),见解析
    【分析】
    (1)补全图形,连接AE、AD,通过∠ABE=∠ACD,AB=AC,BE=CD,证明 △ABE ≌ △ACD,得AE=AD,再利用AM⊥DE于M,即可得到DM=EM.
    (2)连接AD,AE,BM ,可求出,当时,可得,由(1)得DM=EM,可知BM是△CDE的中位线从而得到,BM∥CD,得到∠ABM=135°=∠ABE.因为N为BE中点,可知从而证明△ABN ≌ △ABM得到AN=AM,由(1),△ABE ≌ △ACD,可证明∠EAB=∠DAC,AD=AE进而得到∠EAD=90°,又因为DM=EM,即可得到.
    【详解】
    (1)补全图形如下图,

    DM与ME之间的数量关系为DM=ME.
    证明:连接AE,AD,
    ∵ ∠BAC=90°,AB=AC,

    ∴ ∠ABC=∠ACB=45°.
    ∴ ∠ABE=180°-∠ABC=135°.
    ∵ 由旋转,∠BCD=90°,
    ∴ ∠ACD=∠ACB+∠BCD=135°.
    ∴ ∠ABE=∠ACD.
    ∵ AB=AC,BE=CD,
    ∴ △ABE ≌ △ACD.
    ∴ AE=AD.
    ∵ AM⊥DE于M,
    ∴ DM=EM.
    (2)
    证明:连接AD,AE,BM.
    ∵ AB=AC=1,∠BAC=90°,
    ∴ .
    ∵ ,
    ∴ .
    ∵ 由(1)得DM=EM,
    ∴ BM是△CDE的中位线.
    ∴ ,BM∥CD.
    ∴ ∠EBM=∠ECD=90°.
    ∵ ∠ABE=135°,
    ∴ ∠ABM=135°=∠ABE.
    ∵ N为BE中点,
    ∴ .
    ∴ BM=BN.
    ∵ AB=AB,
    ∴ △ABN ≌ △ABM.
    ∴ AN=AM.
    ∵ 由(1),△ABE ≌ △ACD,
    ∴ ∠EAB=∠DAC,AD=AE.
    ∵ ∠BAC=∠DAC+∠DAB=90°,
    ∴ ∠EAD=90°.
    ∵ DM=EM,
    ∴ .
    ∴ .

    【点睛】
    本题考查了旋转的性质和三角形全等的判定及性质,熟练掌握三角形全等的判定及性质是解题的关键.
    3、(1);(2)见解析
    【分析】
    (1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;
    (2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.
    【详解】
    (1)







    (2)连接DE



    ,,



    【点睛】
    本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.
    4、(1);;;(2)证明;证明见解析;(3),
    【分析】
    (1)根据图形可得出三对全等三角形;
    (2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;
    (3)连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,即可得出;连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,即可得出.
    【详解】
    解:(1);;
    (2)证明;
    由题意得,在正方形ABCD中,
    ∵,,
    在和中


    证明:;
    由题意得,在正方形HIJK中,
    ,,
    ∵AC为正方形ABCD的对角线,
    ∴,
    在RtΔAHK和RtΔCIJ中

    ∴RtΔAHK≅RtΔCIJ;
    证明:
    由题意得,在正方形EBFG中,
    ,,
    ∵AC为正方形ABCD的对角线,
    ∴,
    在RtΔAEG和RtΔCFG中

    ∴RtΔAEG≅RtΔCFG;
    (3)如图,连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,

    SΔABC=SΔADC=12×6×6=18.

    连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,
    ∴.
    ∴,.
    【点睛】
    题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键.
    5、(1)见解析;(2)图②中,图③中
    【分析】
    (1)在上截取,连接,可先证得,则,,进而可证得△AED为等腰直角三角形,即可得证;
    (2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的,与之间的数量关系.
    【详解】
    解:(1)证明:如图,在上截取,连接.
    ∵四边形是正方形,
    ,,
    ,,



    ,,

    ,,

    ∴△ECF是等腰直角三角形,
    在中,,




    (2)图②:,理由如下:
    如下图,在延长线上截取,连接.


    ∵四边形是正方形,
    ,,
    ,,



    ,,

    ,,

    ∴△ECF是等腰直角三角形,
    在中,,


    图③:
    如图,在DE上截取DF=BE,连接.


    ∵四边形是正方形,
    ,,
    ,,



    ,,

    ,,

    ∴△ECF是等腰直角三角形,
    在中,,


    【点睛】
    本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键.

    相关试卷

    北京课改版八年级下册第十五章 四边形综合与测试习题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试习题,共23页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试复习练习题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试复习练习题,共23页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。

    2021学年第十五章 四边形综合与测试课后测评:

    这是一份2021学年第十五章 四边形综合与测试课后测评,共26页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map