年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度京改版八年级数学下册第十五章四边形定向练习试卷(精选)

    立即下载
    加入资料篮
    2021-2022学年度京改版八年级数学下册第十五章四边形定向练习试卷(精选)第1页
    2021-2022学年度京改版八年级数学下册第十五章四边形定向练习试卷(精选)第2页
    2021-2022学年度京改版八年级数学下册第十五章四边形定向练习试卷(精选)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第十五章 四边形综合与测试复习练习题

    展开

    这是一份初中数学第十五章 四边形综合与测试复习练习题,共28页。试卷主要包含了下列图形中不是中心对称图形的是,下列说法中,正确的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形定向练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是(  )
    A.cm B.2cm C.1cm D.2cm
    2、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是(  )

    A. B. C. D.
    3、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为(  )
    A.6 B.6.5 C.10 D.13
    4、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C.已知,.点B到原点的最大距离为( )

    A.22 B.18 C.14 D.10
    5、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )
    A.5 B.4 C.3 D.2
    6、下列图形中不是中心对称图形的是( )
    A. B. C. D.
    7、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OB=EB,点G为BD上一点,满足EG⊥FG,若∠DBC=30°,则∠OGE的度数为(  )

    A.30° B.36° C.37.5° D.45°
    8、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为(  )

    A.2 B.4 C.4或 D.2或
    9、下列说法中,正确的是( )
    A.若,,则
    B.90′=1.5°
    C.过六边形的每一个顶点有4条对角线
    D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查
    10、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )

    A.1 B.2 C.3 D.4
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点……以此类推,则正方形的边长为__________.


    2、若一个菱形的两条对角线的长为3和4,则菱形的面积为___________.
    3、如图,的度数为_______.

    4、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.
    5、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E,CD=5,DB=13,求BE的长.


    2、如图,四边形ABCD是平行四边形,,且分别交对角线于点E、F,连接ED、BF.

    (1)求证:四边形BEDF是平行四边形;
    (2)若AE=EF,请直接写出图2中面积等于四边形ABCD的面积的的所有三角形.
    3、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.
    4、(探究发现)
    (1)如图1,△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=90°,则AE、AF、AB之间满足的数量关系是   .
    (类比应用)
    (2)如图2,△ABC中,AB=AC,∠BAC=120°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=60°,试探究AE、AF、AB之间满足的数量关系,并说明理由.
    (拓展延伸)
    (3)在△ABC中,AB=AC=5,∠BAC=120°,点D为BC的中点,E、F分别为直线AC、AB上两点,若满足CE=1,∠EDF=60°,请直接写出AF的长.

    5、如图1,在平面直角坐标系中,且;

    (1)试说明是等腰三角形;
    (2)已知.写出各点的坐标:A( , ),B( , ),C( , ).
    (3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.
    ①若的一条边与BC平行,求此时点M的坐标;
    ②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.

    -参考答案-
    一、单选题
    1、B
    【分析】
    由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
    【详解】
    解:∵菱形ABCD的周长为8cm,
    ∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
    ∵∠ABC=60°,
    ∴△ABC是等边三角形,
    ∴AC=AB=2cm,
    ∴OA=1(cm),
    在Rt△AOB中,由勾股定理得:OB===(cm),
    ∴BD=2OB=2(cm),
    故选:B.

    【点睛】
    此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
    2、B
    【分析】
    利用中心对称图形的定义判断即可.
    【详解】
    解:根据中心对称图形的定义可知,②满足条件.
    故选:.
    【点睛】
    本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.
    3、B
    【分析】
    根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
    【详解】
    解:∵直角三角形两直角边长为5和12,
    ∴斜边=,
    ∴此直角三角形斜边上的中线的长==6.5.
    故选:B.
    【点睛】
    本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.
    4、B
    【分析】
    首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.
    【详解】
    解:取AC的中点E,连接BE,OE,OB,

    ∵∠AOC=90°,AC=16,
    ∴OE=CEAC=8,
    ∵BC⊥AC,BC=6,
    ∴BE10,
    若点O,E,B不在一条直线上,则OB<OE+BE=18.
    若点O,E,B在一条直线上,则OB=OE+BE=18,
    ∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.
    故选:B
    【点睛】
    此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
    5、A
    【分析】
    利用直角三角形斜边的中线的性质可得答案.
    【详解】
    解:∵∠C=90°,若D为斜边AB上的中点,
    ∴CD=AB,
    ∵AB的长为10,
    ∴DC=5,
    故选:A.
    【点睛】
    此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
    6、B
    【分析】
    根据中心对称图形的概念求解.
    【详解】
    解:A、是中心对称图形,故本选项不合题意;
    B、不是中心对称图形,故本选项符合题意;
    C、是中心对称图形,故本选项不合题意;
    D、是中心对称图形,故本选项不合题意.
    故选:B.
    【点睛】
    本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    7、C
    【分析】
    根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案.
    【详解】
    ∵矩形ABCD


    ∵OB=EB,


    ∵点O为对角线BD的中点,

    和中



    ∵EG⊥FG,即



    故选:C.
    【点睛】
    本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.
    8、D
    【分析】
    根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.
    【详解】
    解:当△EAP与△PBQ全等时,有两种情况:
    ①当EA=PB时,△APE≌△BQP(SAS),
    ∵AB=10cm,AE=6cm,
    ∴BP=AE=6cm,AP=4cm,
    ∴BQ=AP=4cm;
    ∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
    ∴点P和点Q的运动时间为:4÷2=2s,
    ∴v的值为:4÷2=2cm/s;
    ②当AP=BP时,△AEP≌△BQP(SAS),
    ∵AB=10cm,AE=6cm,
    ∴AP=BP=5cm,BQ=AE=6cm,
    ∵5÷2=2.5s,
    ∴2.5v=6,
    ∴v=.
    故选:D.
    【点睛】
    本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.
    9、B
    【分析】
    由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.
    【详解】
    解:若,则故A不符合题意;
    90′=故B符合题意;
    过六边形的每一个顶点有3条对角线,故C不符合题意;
    疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;
    故选:B.
    【点睛】
    本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.
    10、B
    【分析】
    根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解
    【详解】
    第一个图形是中心对称图形,又是轴对称图形,
    第二个图形是中心对称图形,又是轴对称图形,
    第三个图形不是中心对称图形,是轴对称图形,
    第四个图形不是中心对称图形,是轴对称图形,
    综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.
    故选:B.
    【点睛】
    点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    二、填空题
    1、
    【分析】
    利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长.
    【详解】
    解:∵A,B,C,D是正方形各边的中点
    ∴,
    ∵正方形ABCD的边长为,即AB=,
    ∴,解得:,
    ∴==2,
    同理==2,
    ==4 …,
    ∴,
    ∴=,
    ∴的边长为
    故答案为:.
    【点睛】
    本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目.
    2、6
    【分析】
    由题意直接由菱形的面积等于对角线乘积的一半进行计算即可.
    【详解】
    解:菱形的面积.
    故答案为:6.
    【点睛】
    本题考查菱形的性质,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.
    3、
    【分析】
    根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.
    【详解】
    解:如图,

    ∵∠1=∠D+∠F,∠2=∠A+∠E,∠1+∠2+∠B+∠C=360°,
    ∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
    故答案为:.
    【点睛】
    本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键.
    4、-1
    【分析】
    根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.
    【详解】
    解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,
    ∴m=﹣2021,n=2020,
    ∴m+n=﹣1.
    故答案为:-1.
    【点睛】
    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    5、或或3
    【分析】
    过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠ABC=90°,
    由勾股定理得:,
    有三种情况:
    ①当AB=BP=3时,如图1,过B作BM⊥AC于M,
    S△ABC=,

    解得:,

    ∵AB=BP=3,BM⊥AC,
    ∴,
    ∴AP=AM+PM=,
    ∴△PAB的面积=;
    ②当AB=AP=3时,如图2,

    ∵BM=,
    ∴△PAB的面积S=;
    ③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=,

    ∵四边形ABCD是矩形,NQ⊥AC,
    ∴PN∥BC,
    ∵AN=BN,
    ∴AP=CP,
    ∴,
    ∴△PAB的面积;
    即△PAB的面积为或或3.
    故答案为:或或3.
    【点睛】
    本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.
    三、解答题
    1、
    【分析】
    由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE,依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴AB=CD,∠A=∠C=90°
    ∵由翻折的性质可知∠F=∠A,BF=AB,
    ∴BF=DC,∠F=∠C.
    在△DCE与△BEF中,
    ∴△DCE≌△BFE.
    在Rt△BDC中,由勾股定理得:BC=.
    ∵△DCE≌△BFE,
    ∴BE=DE.
    设BE=DE=x,则EC=12−x.
    在Rt△CDE中,CE2+CD2=DE2,即(12−x)2+52=x2.
    解得:x=.
    ∴BE=.
    【点睛】
    本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x的方程是解题的关键.
    2、(1)证明见解析;(2)
    【分析】
    (1)先证明再证明可得从而有 于是可得结论;
    (2)先证明再证明,从而可得结论.
    【详解】
    证明:(1) 四边形ABCD是平行四边形,



    ∴∠BEF=∠DFE,




    四边形BEDF是平行四边形.
    (2)由(1)得:



    四边形BEDF是平行四边形, 四边形ABCD是平行四边形,

    ∴S△ADF=S△DEC=S△ABF=S△BEC=13S▱ABCD.
    【点睛】
    本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的的三角形是解题的关键.
    3、这个多边形的边数是6
    【分析】
    多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,即可得到方程,从而求出边数.
    【详解】
    解:设这个多边形的边数为n,
    由题意得:(n-2)×180°=2×360°,
    解得n=6,
    ∴这个多边形的边数是6.
    【点睛】
    此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.
    4、(1)AB=AF+AE;(2)AE+AF=AB,理由见解析;(3)或
    【分析】
    (1)证明△BDF≌OADE,可得BF=AE,从而证明AB=AF+AE;
    (2)取AB中点G,连接DG,利用ASA证明△GDF≌△ADE,得到GF=AE,可得AG=AB=AF+FG=AE+AF;
    (3)分两种情况:当点E在线段AC上时或当点E在AC延长线上时,取AC的中点H,连接DH,同理证明△ADF≌△HDE,得到AF=HE,从而求解.
    【详解】
    (1)

    如图1,∵AB=AC,∠BAC=90°,
    ∴∠B=∠C=45°,
    ∵D为BC中点,
    ∴AD⊥BC,∠BAD=∠CAD=45°,AD=BD=CD,
    ∴∠ADB=∠ADF+∠BDF=90°,
    ∵∠EDF=∠ADE+∠ADF=90°,
    ∴∠BDF=∠ADE,
    ∵BD=AD,∠B=∠CAD=45°,
    ∴△BDF≌△ADE(ASA),
    ∴BF=AE,
    ∴AB=AF+BF=AF+AE;
    故答案为:AB=AF+AE;
    (2)

    AE+AF=AB.理由是:
    如图2,取AB中点G,连接DG,
    ∵点G是斜边中点,
    ∴DG=AG=BG=AB,
    ∵AB=AC,∠BAC=120°,点D为BC的中点,
    ∴∠BAD=∠CAD=60°,
    ∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,
    又∵∠FAD+∠ADE=∠FDE=60°,
    ∴∠GDF=∠ADE,
    ∵DG=AG,∠BAD=60°,
    ∴△ADG为等边三角形,
    ∴∠AGD=∠CAD=60°,GD=AD,
    ∴△GDF≌△ADE(ASA),
    ∴GF=AE,
    ∴AG=AB=AF+FG=AE+AF,
    ∴AE+AF=AB;
    (3)

    当点E在线段AC上时,如图3,取AC的中点H,连接DH,
    当AB=AC=5,CE=1,∠EDF=60°时,
    AE=4,此时F在BA的延长线上,
    同(2)可得:△ADF≌△HDE (ASA),
    ∴AF=HE,
    ∵AH=CH=AC=,CE=1,
    ∴,

    当点E在AC延长线上时,如图4,
    同理可得:;
    综上:AF的长为或.
    【点睛】
    本题考查三角形综合问题,掌握全等三角形的判定与性质是解题的关键
    5、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.

    【分析】
    (1)设,,,则,由勾股定理求出,即可得出结论;
    (2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;
    (3)①分当时,;当时,;得出方程,解方程即可;
    ②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.
    【详解】
    解:(1)证明:设,,,则,
    在中,,

    ∴是等腰三角形;
    (2)∵,,
    ∴,
    ∴,,,.
    ∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),
    故答案为:12,0;-8,0;0,16;
    (3)①如图3-1所示,
    当MN∥BC时,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴AM=BM,
    ∴M为AB的中点,
    ∵,
    ∴,
    ∴,
    ∴点M的坐标为(2,0);

    如图3-2所示,当ON∥BC时,
    同理可得,
    ∴,
    ∴M点的坐标为(4,0);
    ∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;

    ②如图3-3所示,当OM=OE时,
    ∵E是AC的中点,∠AOC=90°,,
    ∴,
    ∴此时M的坐标为(0,10);

    如图3-4所示,当时,
    ∴此时M点与A点重合,
    ∴M点的坐标为(12,0);

    如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,
    ∵OE=AE,EF⊥OA,
    ∴,
    ∴,
    设,则,
    ∵,
    ∴,
    解得,
    ∴M点的坐标为(,0);
    综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.

    【点睛】
    本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.

    相关试卷

    初中北京课改版第十五章 四边形综合与测试随堂练习题:

    这是一份初中北京课改版第十五章 四边形综合与测试随堂练习题,共25页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练,共29页。

    初中北京课改版第十五章 四边形综合与测试课堂检测:

    这是一份初中北京课改版第十五章 四边形综合与测试课堂检测,共23页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map