年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形定向攻克练习题(名师精选)

    立即下载
    加入资料篮
    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形定向攻克练习题(名师精选)第1页
    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形定向攻克练习题(名师精选)第2页
    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形定向攻克练习题(名师精选)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试同步达标检测题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步达标检测题,共29页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,,点分别是上的点,,点分别是的中点,则的长为(    ).A.4 B.10 C.6 D.82、如图,菱形中,.以为圆心,长为半径画,点为菱形内一点,连.若,且,则图中阴影部分的面积为(    A. B. C. D.3、平行四边形中,,则的度数是(    A. B. C. D.4、如图,ABC是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是(    A.ABC都不在 B.只有BC.只有AC D.ABC5、已知中,CD是斜边AB上的中线,则的度数是(    A. B. C. D.6、下列图形中,是中心对称图形的是(  )A. B.C. D.7、如图菱形ABCD,对角线ACBD相交于点O,若BD=8,AC=6,则AB的长是(    A.5 B.6 C.8 D.108、下列图形中,既是中心对称图形又是轴对称图形的有几个(  )A.1个 B.2个 C.3个 D.4个9、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为(  )A.2 B.4 C.4或 D.2或10、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在at的值,使全等时,则t的值为(   
    A.2 B.2或1.5 C.2.5 D.2.5或2第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD中,ACBD相交于点OAC=12,如果∠AOD=60°,则DC=__.2、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点FG分别在边ABAD上,则cos∠EFG的值为________.3、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.4、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.5、菱形ABCD的周长为,对角线ACBD相交于点OAOBO=1:2,则菱形ABCD的面积为________.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,ADBC上的高线,CEAB边上的中线,G(1)若,求线段AC的长;(2)求证:2、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BMCN相交于点O,若∠BON=60°,则BM=CN②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BMCN相交于点O,若∠BON=90°,则BM=CN然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BMCN相交于点O,若∠BON=108°,则BM=CN任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正nn≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BMCN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BMCN相交于点O∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.3、如图,在Rt△ABC中,∠ACB=90°,DAB中点,(1)试判断四边形BDCE的形状,并证明你的结论;(2)若∠ABC=30°,AB=4,则四边形BDCE的面积为        4、在平面直角坐标系中,过A(0,4)的直线a垂直于y轴,点M(9,4)为直线a上一点,若点P从点M出发,以每秒2cm的速度沿直线a向左移动,点Q从原点同时出发,以每秒1cm的速度沿x轴向右移动,(1)几秒后PQ平行于y轴?(2)在点PQ运动的过程中,若线段OQ=2AP,求点P的坐标.5、如图:在中,,点的中点,点为直线上的动点(不与点重合),连接,以为边在的上方作等边,连接(1)是________三角形;(2)如图1,当点在边上时,运用(1)中的结论证明(3)如图2,当点的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由. -参考答案-一、单选题1、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点PD分别是AFAB的中点,PD=BF=6,PD//BC∴∠PDA=∠CBA同理,QD=AE=8,∠QDB=∠CAB∴∠PDA+∠QDB=90°,即∠PDQ=90°,PQ==10,故选:B.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.2、C【分析】过点P作交于点M,由菱形,由,故可得,根据SAS证明,求出,即可求出【详解】如图,过点P交于点M,∵四边形ABCD是菱形,中,中,,即解得:故选:C.【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.3、B【分析】根据平行四边形对角相等,即可求出的度数.【详解】解:如图所示,∵四边形是平行四边形,故:B.【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.4、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.【详解】解:如图所示:连接BD为直角三角形,DAC中点,∵覆盖半径为300 ,ABC三个点都被覆盖,故选:D.【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.5、B【分析】由题意根据三角形的内角和得到∠A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论.【详解】解:∵∠ACB=90°,∠B=54°,
    ∴∠A=36°,
    CD是斜边AB上的中线,
    CD=AD
    ∴∠ACD=∠A=36°.
    故选:B.【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键.6、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.7、A【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,OA=OC=3,OB=OD=4,AOBORtAOB中,由勾股定理得:故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.8、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、D【分析】根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】解:当△EAP与△PBQ全等时,有两种情况:
    ①当EA=PB时,△APE≌△BQPSAS),
    AB=10cmAE=6cm
    BP=AE=6cmAP=4cm
    BQ=AP=4cm
    ∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
    ∴点P和点Q的运动时间为:4÷2=2s
    v的值为:4÷2=2cm/s
    ②当AP=BP时,△AEP≌△BQPSAS),
    AB=10cmAE=6cm
    AP=BP=5cmBQ=AE=6cm
    ∵5÷2=2.5s
    ∴2.5v=6,
    v=
    故选:D.【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.10、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQBE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQBE=CP
    AB=BC=10厘米,AE=4厘米,
    BE=CP=6厘米,
    BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    ,即点Q的运动速度与点P的运动速度不相等,
    BPCQ
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点PQ运动的时间t=(秒).综上t的值为2.5或2.
    故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.二、填空题1、【分析】根据矩形的对角线互相平分且相等可得OAOD,然后判断出△AOD是等边三角形,再根据勾股定理解答即可.【详解】解:∵四边形ABCD是矩形,OAODAC×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等边三角形,ADOA=6,故答案为:【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD等边三角形.2、【分析】根据题意连接BE,连接AEFGO,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在RtBCE中计算出BE=CE=,然后证明BEAB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在RtBEF中利用勾股定理得到(2-x2+(2=x2,解得x,然后在RtAOF中利用勾股定理计算出OF,再利用余弦的定义求解即可.【详解】解:连接BE,连接AEFGO,如图,
    ∵四边形ABCD为菱形,∠A=60°,
    ∴△BDC为等边三角形,∠ADC=120°,
    E点为CD的中点,
    CE=DE=1,BECD
    RtBCE中,BE=CE=
    ABCD
    BEAB


    AF=x
    ∵菱形纸片翻折,使点A落在CD的中点E处,
    FE=FA=x
    BF=2-x
    RtBEF中,(2-x2+(2=x2解得:
    RtAOF中,

    故答案为: 【点睛】本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、【分析】设这个正多边形有条边,再建立方程 解方程求解结合从边形的一个顶点出发可以引条对角线,从而可得答案.【详解】解:设这个正多边形有条边,则 解得: 所以从一个正八边形的一个顶点出发可以引条对角线,故答案为:【点睛】本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为边形的一个顶点出发可以引条对角线”是解本题的关键.4、144°度
     【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.【详解】解:∵四边形的四个外角的度数之比为1:2:3:4,∴四个外角的度数分别为:360°×360°×360°×360°×∴它最大的内角度数为:故答案为:144°.【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.5、4【分析】根据菱形的性质求得边长,根据AOBO=1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解.【详解】解:如图四边形是菱形菱形ABCD的周长为 AOBO=1:2,故答案为:4【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键.三、解答题1、(1);(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.【详解】(1)(2)连接DE【点睛】本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.2、(1)选①或②或③,证明见详解;(2)①当时,结论成立;②当时,还成立,证明见详解.【分析】(1)命题①,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;(2)①根据(1)中三个命题的结果,得出相应规律,即可得解;②连接BDCE,根据全等三角形的判定定理和性质可得:,利用各角之间的关系及等量代换可得:,继续利用全等三角形的判定定理和性质即可得出证明.【详解】解:(1)如选命题①,证明:如图所示:
           中,   如选命题②,证明:如图所示:
         中,  如选命题③,证明:如图所示:
             中,  (2)①根据(1)中规律可得:当时,结论成立;②答:当时,成立.证明:如图所示,连接BDCE
     中,        又∵  中,【点睛】题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.3、(1)四边形是菱形,证明见解析;(2)【分析】(1)先证明四边形是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明从而可得结论;(2)先求解 再求解的面积,再利用菱形的性质可得菱形的面积.【详解】证明:(1)四边形是菱形,理由如下: 四边形是平行四边形,ACB=90°,DAB中点, 四边形是菱形.(2)ABC=30°,AB=4,∠ACB=90°, DAB中点, 四边形是菱形, 故答案为:【点睛】本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.4、(1)3秒后平行于轴;(2)【分析】(1)设秒后平行于轴,先求出的长,再根据矩形的判定与性质可得,由此建立方程,解方程即可得;(2)分①点在点右侧,②点在点左侧两种情况,分别根据建立方程,解方程即可得.【详解】解:(1)秒后平行于轴,垂直于轴,垂直于轴,平行于轴,四边形是矩形,,即解得即3秒后平行于轴;(2)由题意得:经过秒后,垂直于轴,点在直线上,且点的坐标为的纵坐标为4,①当点在点右侧时,得:解得此时点的坐标为②当点在点左侧时,得:解得此时点的坐标为综上,点的坐标为【点睛】本题考查了坐标与图形、矩形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键.5、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明,即可证明△OBC是等边三角形;
    (2)先证明,即可利用SAS证明,得到(3)先证明,即可利用SAS证明,得到【详解】(1)∵∠ACB=90°,∠A=30°,OAB的中点,∴△OBC是等边三角形,故答案为:等边;(2)由(1)可知,是等边三角形,,即(3)成立,证明:由(1)可知,是等边三角形,,即【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键. 

    相关试卷

    北京课改版八年级下册第十五章 四边形综合与测试课时作业:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课时作业,共27页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试练习题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试练习题,共29页。

    数学八年级下册第十五章 四边形综合与测试课时作业:

    这是一份数学八年级下册第十五章 四边形综合与测试课时作业,共30页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map