年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年京改版八年级数学下册第十五章四边形定向测评练习题(名师精选)

    立即下载
    加入资料篮
    2022年京改版八年级数学下册第十五章四边形定向测评练习题(名师精选)第1页
    2022年京改版八年级数学下册第十五章四边形定向测评练习题(名师精选)第2页
    2022年京改版八年级数学下册第十五章四边形定向测评练习题(名师精选)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试课时作业

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课时作业,共27页。
    京改版八年级数学下册第十五章四边形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中不是中心对称图形的是(    A. B. C. D.2、如图,在中,,点分别是上的点,,点分别是的中点,则的长为(    ).A.4 B.10 C.6 D.83、下图是文易同学答的试卷,文易同学应得(    A.40分 B.60分 C.80分 D.100分4、如图,在平面直角坐标系中,点Ax轴正半轴上的一个动点,点Cy轴正半轴上的点,于点C.已知.点B到原点的最大距离为(    A.22 B.18 C.14 D.105、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为(  )A.7 B. C.8 D.96、下列图中,既是轴对称图形又是中心对称图形的是(  )A. B. C. D.7、在锐角△ABC中,∠BAC=60°,BNCM为高,PBC的中点,连接MNMPNP,则结论:①NPMP;②ANABAMAC;③BN=2AN;④当∠ABC=60°时,MNBC,一定正确的有(    A.①②③ B.②③④ C.①②④ D.①④8、如图,ABC是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是(    A.ABC都不在 B.只有BC.只有AC D.ABC9、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是(    A.2.5 B.2 C. D.10、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是(  )A.7 B.8 C.9 D.10第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,的度数为_______.2、若点P(m﹣1,5)与点Q(﹣3,n)关于原点成中心对称,则mn的值是___.3、如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _____.4、如图,点EF在正方形ABCD的对角线AC上,AC=10,AECF=3,则四边形BFDE的面积为 _____.5、在平行四边形ABCD中,若∠A=130°,则∠B=______,∠C=______,∠D=______.三、解答题(5小题,每小题10分,共计50分)1、在中,,斜边,过点,以AB为边作菱形ABEF,若,求的面积.2、如图,将▱ABCD的边AB延长到点E,使BEAB,连接DE,交边BC于点F(1)求证:△BEF≌△CDF(2)连接BDCE,若∠BFD=2∠A,求证四边形BECD是矩形.3、在平面直角坐标系中,过A(0,4)的直线a垂直于y轴,点M(9,4)为直线a上一点,若点P从点M出发,以每秒2cm的速度沿直线a向左移动,点Q从原点同时出发,以每秒1cm的速度沿x轴向右移动,(1)几秒后PQ平行于y轴?(2)在点PQ运动的过程中,若线段OQ=2AP,求点P的坐标.4、如图,等腰△ABC中,ABAC,∠BAC=90°,BE平分∠ABCACE,过CCDBED(1)如图1,求证:CDBE(2)如图2,过点AAFBE,写出AFBDCD之间的数量关系并说明理由.5、在RtABC中,∠ACB=90°,ACBC,点DAB边上一点,过点DDEAB,交BC于点E,连接AE,取AE的中点P,连接DPCP(1)观察猜想:  如图(1),DPCP之间的数量关系是     DPCP之间的位置关系是     (2)类比探究: 将图(1)中的△BDE绕点B逆时针旋转45°,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由.(3)问题解决: 若BC=3BD=3  将图(1)中的△BDE绕点B在平面内自由旋转,当BEAB时,请直接写出线段CP的长. -参考答案-一、单选题1、B【分析】根据中心对称图形的概念求解.【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点PD分别是AFAB的中点,PD=BF=6,PD//BC∴∠PDA=∠CBA同理,QD=AE=8,∠QDB=∠CAB∴∠PDA+∠QDB=90°,即∠PDQ=90°,PQ==10,故选:B.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.3、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键4、B【分析】首先取AC的中点E,连接BEOEOB,可求得OEBE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BEOEOB∵∠AOC=90°,AC=16,OECEAC=8,BCACBC=6,BE10,若点OEB不在一条直线上,则OBOE+BE=18.若点OEB在一条直线上,则OBOE+BE=18,∴当OEB三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5、C【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.【详解】解:∵∠AEB=90D是边AB的中点,AB=6,DEAB=3,EF=1,DFDE+EF=3+1=4.D是边AB的中点,点F是边BC的中点,DFABC的中位线,AC=2DF=8.故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.6、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,也不是中心对称图形.故本选项不合题意;B、是轴对称图形,不是中心对称图形.故本选项不合题意;C、不是轴对称图形,是中心对称图形.故本选项不合题意;D、既是轴对称图形又是中心对称图形.故本选项符合题意.故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】CMBN分别是高∴△CMB、△BNC均是直角三角形∵点PBC的中点PMPN分别是两个直角三角形斜边BC上的中线故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜AB=2ANAC=2AMANAB=AMAC=1:2即②正确RtABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形CMABBNACMN分别是ABAC的中点MN是△ABC的中位线MNBC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.8、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.【详解】解:如图所示:连接BD为直角三角形,DAC中点,∵覆盖半径为300 ,ABC三个点都被覆盖,故选:D.【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.9、D【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.【详解】解:四边形OABC是矩形,中,由勾股定理可知:弧长为,故在数轴上表示的数为故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.10、D【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数==10.故选:D【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.二、填空题1、【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【详解】解:如图,
    ∵∠1=∠D+∠F,∠2=∠A+∠E,∠1+∠2+∠B+∠C=360°,
    ∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
    故答案为:【点睛】本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键.2、9【分析】根据关于原点对称点的坐标特征求出的值,再代入计算即可.【详解】解:与点关于原点成中心对称,故答案为:9.【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数.3、【分析】由正方形的对称性可知,PBPD,当BPE共线时PD+PE最小,求出BE即可.【详解】解:∵正方形中BD关于AC对称,PBPDPD+PEPB+PEBE,此时PD+PE最小,∵正方形ABCD的面积为18,△ABE是等边三角形,BE=3PD+PE最小值是3故答案为:3【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.4、20【分析】连接BD,交ACO,根据题意和正方形的性质可求得EF=4,ACBD,由即可求解.【详解】解:如图,连接BD,交ACO∵四边形ABCD是正方形,AC=10,ACBD=10,ACBDOAOCOBOD=5,AECF=3,EOFO=2,EF=EO+FO=4, 故答案为:20.【点睛】本题主要考查了正方形的性质,熟练掌握正方形的对角线相等且互相垂直平分是解题的关键.5、            【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案.【详解】解:在平行四边形ABCD中,的邻角,的对角,故答案为:【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键.三、解答题1、4【分析】分别过点ECEHCG垂直AB,垂足为点HG,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过垂足为点 四边形ABEF为菱形,中,根据题意,,根据平行线间的距离处处相等, .答:的面积为4.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.2、(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质可得ABCDAB=CD,进而证明∠BEF=∠FDC,∠FBE=∠FCD, ASA证明△BEF≌△CDF.(2)根据等边对等角证明FD=FC,进而证明,根据对角线相等的平行四边形是矩形即可证明【详解】(1)∵四边形ABCD为平行四边形,ABCDAB=CD.BE=AB,BECDBE=CD.∴∠BEF=∠FDC,∠FBE=∠FCD,∴△BEF≌△CDF.(2)∵BECDBE=CD.∴四边形BECD为平行四边形, DF=DE,CF=BC, ∵四边形ABCD为平行四边形,∴∠FCD=∠A,∵∠BFD=∠FCD+∠FDC,∠BFD=2∠A,∴∠FDC=∠FCD,FD=FC.DF=DE,CF=BC,BC=DE,∴▱BECD是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,掌握平行四边形的性质与判定是解题的关键.3、(1)3秒后平行于轴;(2)【分析】(1)设秒后平行于轴,先求出的长,再根据矩形的判定与性质可得,由此建立方程,解方程即可得;(2)分①点在点右侧,②点在点左侧两种情况,分别根据建立方程,解方程即可得.【详解】解:(1)秒后平行于轴,垂直于轴,垂直于轴,平行于轴,四边形是矩形,,即解得即3秒后平行于轴;(2)由题意得:经过秒后,垂直于轴,点在直线上,且点的坐标为的纵坐标为4,①当点在点右侧时,得:解得此时点的坐标为②当点在点左侧时,得:解得此时点的坐标为综上,点的坐标为【点睛】本题考查了坐标与图形、矩形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键.4、(1)证明见解析;(2)BD= CD+2AF,理由见解析【分析】(1)延长BACD的延长线交于点G,先证明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分线,得到∠GBD=∠CBD,即可证明△BDG≌△BDC得到CD=GD,则(2)如图所示,连接AD,取BE中点H,连接AH,由直角三角形斜边上的中线等于斜边的一半可得,则,再由∠BAC=90°,AB=AC,得到∠ABC=45°,根据BD平分∠ABC,即可推出∠AHF=∠ABH+∠BAH=45°,从而得到AF=HF,则DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF【详解】解:(1)如图所示,延长BACD的延长线交于点G∵∠BAC=90°,∴∠CAG=90°,CDBE∴∠EDC=∠GDB=∠BAE=90°,又∵∠AEB=∠DEC∴∠ABE=∠DCE在△ABE和△ACG中,∴△ABE≌△ACGASA),BE=CGBD是∠ABC的角平分线,∴∠GBD=∠CBD在△BDG和△BDC中,∴△BDG≌△BDCASA),CD=GD  (2)BD= CD+2AF,理由如下:如图所示,连接AD,取BE中点H,连接AH由(1)得CD=GD∵△BAE和△CAG都是直角三角形,HBE中点,DCG中点,∴∠ABH=∠BAH∵∠BAC=90°,AB=AC∴∠ABC=45°,又∵BD平分∠ABC∴∠ABH=∠BAH=22.5°,∴∠AHF=∠ABH+∠BAH=45°,AFDHHF=DF,∠AFH=90°,∴∠HAF=45°,AF=HFDH=2AFBD=BH+HD=BH+2AF=CD+2AF【点睛】.本题主要考查了全等三角形的性质与判定,角平分线的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.5、(1)PDPCPDPC;(2)成立,见解析;(3)2或4【分析】(1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;(2)过点PPTABBC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;(3)分两种情况,当点EBC的上方时和当点EBC的下方时,过点PPQBCQ,利用等腰直角三角形的性质求得,即可求解.【详解】解:(1)∵∠ACB=90°,ACBC∵点PAE的中点,故答案为:(2)结论成立.理由如下:过点PPTABBC的延长线于T,交AC于点O由勾股定理可得:∵点PAE的中点,中,(3)如图3﹣1中,当点EBC的上方时,过点PPQBCQ由(2)可得,,∴为等腰直角三角形由勾股定理得,如图3﹣2中,当点EBC的下方时,同法可得PCPD=2.综上所述,PC的长为4或2.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形. 

    相关试卷

    初中北京课改版第十五章 四边形综合与测试随堂练习题:

    这是一份初中北京课改版第十五章 四边形综合与测试随堂练习题,共25页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练,共29页。

    初中北京课改版第十五章 四边形综合与测试课堂检测:

    这是一份初中北京课改版第十五章 四边形综合与测试课堂检测,共23页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map