


【历年真题】2022年重庆市南岸区中考数学历年高频真题专项攻克 B卷(含答案及解析)
展开这是一份【历年真题】2022年重庆市南岸区中考数学历年高频真题专项攻克 B卷(含答案及解析),共25页。试卷主要包含了下列计算错误的是,下列说法中不正确的是等内容,欢迎下载使用。
2022年重庆市南岸区中考数学历年高频真题专项攻克 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在下列运算中,正确的是( )
A.a3•a2=a6 B.(ab2)3=a6b6
C.(a3)4=a7 D.a4÷a3=a
2、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )
A.340° B.350° C.360° D.370°
3、下列二次根式中,最简二次根式是( )
A. B. C. D.
4、下列计算错误的是( )
A. B.
C. D.
5、下列说法中不正确的是( )
A.平面内,垂直于同一条直线的两直线平行
B.过一点有且只有一条直线与已知直线平行
C.平面内,过一点有且只有一条直线与已知直线垂直
D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离
6、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( )
A. B. C. D.
7、在实数,,0.1010010001…,,中无理数有( )
A.4个 B.3个 C.2个 D.1个
8、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )
A.50° B.65° C.75° D.80°
9、如图,二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0),点C(0,﹣m),其中2<m<3,下列结论:①2a+b>0,②2a+c<0,③方程ax2+bx+c=﹣m有两个不相等的实数根,④不等式ax2+(b﹣1)x<0的解集为0<x<m,其中正确结论的个数为( )
A.1 B.2 C.3 D.4
10、已知点D、E分别在的边AB、AC的反向延长线上,且ED∥BC,如果AD:DB=1:4,ED=2,那么BC的长是( )
A.8 B.10 C.6 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若a<<a+1,则整数a=___.
2、若a、b为实数,且,则的值是____.
3、、、三个城市的位置如右图所示,城市在城市的南偏东60°方向,且,则城市在城市的______方向.
4、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.
5、已知f(x)=,那么f()=___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,点M在x轴负半轴上,⊙M与x轴交于A、B两点(A在B的左侧),与y轴交于C、D两点(点C在y轴正半轴上),且,点B的坐标为,点P为优弧CAD上的一个动点,连结CP,过点M作于点E,交BP于点N,连结AN.
(1)求⊙M的半径长;
(2)当BP平分∠ABC时,求点P的坐标;
(3)当点P运动时,求线段AN的最小值.
2、如图,已知△ABC.
(1)请用尺规在图中补充完整以下作图,保留作图痕迹:
作∠ACB的角平分线,交AB于点D;作线段CD的垂直平分线,分别交AC于点E,交BC于点F;连接DE,DF;
(2)求证:四边形CEDF是菱形.
3、下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.
解方程组:.
解:①,得③,第一步,
②③,得,第二步,
.第三步,
将代入①,得.第四步,
所以,原方程组的解为.第五步.
填空:
(1)这种求解二元一次方程组的方法叫做______.
、代入消元法
、加减消元法
(2)第______步开始出现错误,具体错误是______;
(3)直接写出该方程组的正确解:______.
4、一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的的小正方体个数.
(1)请画出从正面和从左面看到的这个几何体的形状图.
(2)若小正方体的棱长为2,求该几何体的体积和表面积.
5、如图,.
(1)尺规作图:作的角平分线,交于点;(不写作法,保留作图痕迹)
(2)求证:是等腰三角形.
-参考答案-
一、单选题
1、D
【分析】
由;;,判断各选项的正误即可.
【详解】
解:A中,错误,故本选项不合题意;
B中,错误,故本选项不合题意;
C中,错误,故本选项不合题意;
D中,正确,故本选项符合题意.
故选:D.
【点睛】
本题考查了同底数幂的乘除,积的乘方,幂的乘方等知识.解题的关键在于正确求解.
2、B
【分析】
根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+
∠AOD,然后根据,的度数是一个正整数,可以解答本题.
【详解】
解:由题意可得,图中所有角的度数之和是
∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC
∵,的度数是一个正整数,
∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;
B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;
C、当3∠AOD+∠BOC=360°时,则=,不符合题意;
D、当3∠AOD+∠BOC=370°时,则=,不符合题意.
故选:B.
【点睛】
本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.
3、D
【分析】
根据最简二次根式的条件分别进行判断.
【详解】
解:A.,不是最简二次根式,则A选项不符合题意;
B.,不是最简二次根式,则B选项不符合题意;
C.,不是最简二次根式,则C选项不符合题意;
D.是最简二次根式,则D选项符合题意;
故选:D.
【点睛】
题考查了最简二次根式:掌握最简二次根式的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式)是解决此类问题的关键.
4、B
【分析】
根据整式的乘除运算法则逐个判断即可.
【详解】
解:选项A:,故选项A正确,不符合题意;
选项B:,故选项B不正确,符合题意;
选项C:,故选项C正确,不符合题意;
选项D:,故选项D正确,不符合题意;
故选:B.
【点睛】
本题考查了同底数幂的乘、除运算;幂的乘方、积的乘方等运算,熟练掌握运算法则是解决本类题的关键.
5、B
【分析】
根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.
【详解】
A、平面内,垂直于同一条直线的两直线平行,故说法正确;
B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;
C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;
D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确.
故选:B
【点睛】
本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立.
6、A
【分析】
看哪个几何体的三视图中有长方形,圆,及三角形即可.
【详解】
解:、三视图分别为正方形,三角形,圆,故选项符合题意;
、三视图分别为三角形,三角形,圆及圆心,故选项不符合题意;
、三视图分别为正方形,正方形,正方形,故选项不符合题意;
、三视图分别为三角形,三角形,矩形及对角线,故选项不符合题意;
故选:A.
【点睛】
本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.
7、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:,是整数,属于有理数;
是分数,属于有理数;
无理数有0.1010010001…,,,共3个.
故选:B.
【点睛】
此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
8、B
【分析】
根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.
【详解】
解:如图,
根据题意得:BG∥AF,
∴∠FAE=∠BED=50°,
∵AG为折痕,
∴ .
故选:B
【点睛】
本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.
9、C
【分析】
利用二次函数的对称轴方程可判断①,结合二次函数过 可判断②,由与有两个交点,可判断③,由过原点,对称轴为 求解函数与轴的另一个交点的横坐标,结合原二次函数的对称轴及与轴的交点坐标,可判断④,从而可得答案.
【详解】
解: 二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0),
抛物线的对称轴为:
2<m<3,则
而图象开口向上
即 故①符合题意;
二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),
则
则
故②符合题意;
与有两个交点,
方程ax2+bx+c=﹣m有两个不相等的实数根,故③符合题意;
关于对称,
过原点,对称轴为
该函数与抛物线的另一个交点的横坐标为:
不等式ax2+(b﹣1)x<0的解集不是0<x<m,故④不符合题意;
综上:符合题意的有①②③
故选:C
【点睛】
本题考查的是二次函数的图象与性质,利用二次函数的图象判断及代数式的符号,二次函数与一元二次方程,不等式之间的关系,熟练的运用数形结合是解本题的关键.
10、C
【分析】
由平行线的性质和相似三角形的判定证明△ABC∽△ADE,再利用相似三角形的性质和求解即可.
【详解】
解:∵ED∥BC,
∴∠ABC=∠ADE,∠ACB=∠AED,
∴△ABC∽△ADE,
∴BC:ED= AB:AD,
∵AD:DB=1:4,
∴AB:AD=3:1,又ED=2,
∴BC:2=3:1,
∴BC=6,
故选:C
【点睛】
本题考查平行线的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答的关键.
二、填空题
1、3
【分析】
估算出的取值范围即可求出a的值.
【详解】
解:∵,
∴3<<4,
∵a<<a+1,
∴a=3,
故答案为:3.
【点睛】
此题主要考查了估算无理数的大小,在确定形如(a≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.
2、
【分析】
由,可得且 再求解的值,从而可得答案.
【详解】
解:,
且
解得:
故答案为:
【点睛】
本题考查的是实数的性质,非负数的性质,求解代数式的值,掌握“绝对值与偶次方的非负性”是解本题的关键.
3、35°
【分析】
根据方向角的表示方法可得答案.
【详解】
解:如图,
∵城市C在城市A的南偏东60°方向,
∴∠CAD=60°,
∴∠CAF=90°-60°=30°,
∵∠BAC=155°,
∴∠BAE=155°-90°-30°=35°,
即城市B在城市A的北偏西35°,
故答案为:35°.
【点睛】
本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
4、
【分析】
设过的正比例函数为: 求解的值及函数解析式,再把代入函数解析式即可.
【详解】
解:设过的正比例函数为:
解得:
所以正比例函数为:
当时,
故答案为:
【点睛】
本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.
5、##
【分析】
把代入函数解析式进行计算即可.
【详解】
解:f(x)=,
故答案为:
【点睛】
本题考查的是已知自变量的值求解函数值,理解的含义是解本题的关键.
三、解答题
1、
(1)的半径长为6;
(2)点;
(3)线段AN的最小值为3.
【分析】
(1)连接CM,根据题意及垂径定理可得,,由直角三角形中角的逆定理可得,,得出为等边三角形,利用等边三角形的性质可得,即可确定半径的长度;
(2)连接AP,过点P作,交AB于点F,由直径所对的圆周角是可得为直角三角形,结合(1)中为等边三角形,根据BP平分,可得,在与中,分别利用含角的直角三角形的性质和勾股定理计算结合点所在象限即可得;
(3)结合图象可得:当B、N、A三点共线时,利用三角形三边长关系可得此时PN取得最小值,即可得出结果.
(1)
解:如图所示:连接CM,
∵,
∴,
∵,
∴,
∴,,
∵,
∴为等边三角形,
∵,
∴,
∴,
∴的半径长为6;
(2)
解:连接AP,过点P作,交AB于点F,如(1)中图所示:
∵AB为的直径,,
∴,
∴为直角三角形,
由(1)得为等边三角形,
∵BP平分,
∴,
∴,
∴,
在中,,
∴,
∴,
∴,
∴,,
点;
(3)
结合图象可得:当B、N、A三点共线时,,PN取得最小值,
∵在中,,
∴当B、N、A三点共线时,PN取得最小值,
此时点P与点A重合,点N与点M重合,
,
∴线段AN的最小值为3.
【点睛】
题目主要考查垂径定理,含角的直角三角形的性质和勾股定理,直径所对的圆周角是,等边三角形的判定和性质等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
2、
(1)见解析
(2)见解析
【分析】
(1)根据要求的步骤作角平分线和垂直平分线即可,并连接DE,DF;
(2)根据垂直平分线的性质可得,进而证明即可得,进而根据四边相等的四边形是菱形,即可证明四边形是菱形.
(1)
如图所示,即为所求,
(2)
证明:
如图,设交于点
垂直平分
在与中
四边形是菱形
【点睛】
本题考查了作角平分线和垂直平分线,菱形的判定,掌握基本作图和菱形的判定定理是解题的关键.
3、
(1)B
(2)二;应该等于
(3)
【分析】
(1)②−③消去了x,得到了关于y的一元一次方程,所以这是加减消元法;
(2)第二步开始出现错误,具体错误是−3y−(−4y)应该等于y;
(3)解方程组即可.
(1)
解:②③消去了,得到了关于的一元一次方程,
故答案为:;
(2)
解:第二步开始出现错误,具体错误是应该等于,
故答案为:二;应该等于;
(3)
解:②③得,
将代入①,得:,
原方程组的解为.
故答案为:.
【点睛】
本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
4、
(1)见解析;
(2)104,192
【分析】
(1)根据从正面看,从左面看的定义,仔细画出即可;
(2)体积等于立方体的个数×单个的体积;表面积等于上下面的个数即从上面看的图形正方形个数的2倍;左右看的正方形面数,前后看的正方形面数,其和乘以一个正方形的面积即可.
(1)
∵ ,
∴ .
(2)
∵小正方体的棱长为2,
∴每个小正方体的体积为2×2×2=8,
∴该几何体的体积为(3+2+1+1+2+4)×8=104;
∵ ,
∴每个小正方形的面积为2×2=4,
∴几何体的上下面的个数为6×2=12个,前后面的个数为6+2+8=16个,左右面的个数为4+3+2+3+4+4=20个,
∴几何体的表面积为:(12+16+20)×4=192.
【点睛】
本题考查了从不同方向看,几何体体积和表面积,正确理解确定小正方体的个数是解题的关键.
5、
(1)作图见解析
(2)证明见解析
【分析】
(1)按照角平分线的作法作图即可.
(2)由(1)问知,由知,即可得到,再由等角对等边可知,即可证得为等腰三角形.
(1)
如图所示,以A为圆心,在AB、AD线段上作点E、F,使得AE=AF,再以A、F为圆心,大于长度为半径画弧,在∠DAB中有交点G,连接AG,延长AG交BC于点P.
(2)
∵
∴
由∵是的角平分线
∴
∴
∴
∴为等腰三角形
【点睛】
本题考查了作角平分线,等腰三角形的证明,作∠OAB的角平分线步骤如下,在和上,分别截取、,使;分别以D、E为圆心,大于长为半径画弧,在内,两弧交于点C;作射线,则就是所求作的角平分线;由等角对等边即可证得三角形为等腰三角形.
相关试卷
这是一份【高频真题解析】2022年安徽省淮北市中考数学历年高频真题专项攻克 B卷(含详解),共20页。
这是一份【历年真题】中考数学历年高频真题专项攻克 B卷(含答案详解),共25页。试卷主要包含了下列命题正确的是等内容,欢迎下载使用。
这是一份[中考专题]2022年北京市顺义区中考数学历年高频真题专项攻克 B卷(含答案及详解),共24页。试卷主要包含了下列计算正确的是,下列命题中,真命题是等内容,欢迎下载使用。